可靠有限元本征模态的数目

D. Givoli
{"title":"可靠有限元本征模态的数目","authors":"D. Givoli","doi":"10.1002/CNM.1088","DOIUrl":null,"url":null,"abstract":"The finite-element (FE) approximation of linear elliptic eigenvalue problems is considered. An analysis based on a number of known estimates leads to the simple formula M=r0ed/(2p)N relating the total number of degrees of freedom N, the maximum relative error level e desired for the eigenvalues, and the number of ‘reliable’ modes M. (Here d is the spatial dimension and p is the polynomial degree of the FE space.) Moreover, a rough estimate for the numerical value of the constant r0 for a given application is found. This result supports a well-known rule of thumb. Copyright © 2008 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1088","citationCount":"4","resultStr":"{\"title\":\"On the number of reliable finite-element eigenmodes\",\"authors\":\"D. Givoli\",\"doi\":\"10.1002/CNM.1088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite-element (FE) approximation of linear elliptic eigenvalue problems is considered. An analysis based on a number of known estimates leads to the simple formula M=r0ed/(2p)N relating the total number of degrees of freedom N, the maximum relative error level e desired for the eigenvalues, and the number of ‘reliable’ modes M. (Here d is the spatial dimension and p is the polynomial degree of the FE space.) Moreover, a rough estimate for the numerical value of the constant r0 for a given application is found. This result supports a well-known rule of thumb. Copyright © 2008 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1088\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究线性椭圆型特征值问题的有限元逼近。基于一些已知估计的分析得出了一个简单的公式M= red /(2p)N,它与总自由度N、特征值所需的最大相对误差水平e和“可靠”模式M的数量有关(这里d是空间维度,p是FE空间的多项式度)。此外,还找到了给定应用中常数r0数值的粗略估计。这个结果支持一个众所周知的经验法则。版权所有©2008 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number of reliable finite-element eigenmodes
The finite-element (FE) approximation of linear elliptic eigenvalue problems is considered. An analysis based on a number of known estimates leads to the simple formula M=r0ed/(2p)N relating the total number of degrees of freedom N, the maximum relative error level e desired for the eigenvalues, and the number of ‘reliable’ modes M. (Here d is the spatial dimension and p is the polynomial degree of the FE space.) Moreover, a rough estimate for the numerical value of the constant r0 for a given application is found. This result supports a well-known rule of thumb. Copyright © 2008 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信