D. Givoli
{"title":"可靠有限元本征模态的数目","authors":"D. Givoli","doi":"10.1002/CNM.1088","DOIUrl":null,"url":null,"abstract":"The finite-element (FE) approximation of linear elliptic eigenvalue problems is considered. An analysis based on a number of known estimates leads to the simple formula M=r0ed/(2p)N relating the total number of degrees of freedom N, the maximum relative error level e desired for the eigenvalues, and the number of ‘reliable’ modes M. (Here d is the spatial dimension and p is the polynomial degree of the FE space.) Moreover, a rough estimate for the numerical value of the constant r0 for a given application is found. This result supports a well-known rule of thumb. Copyright © 2008 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1088","citationCount":"4","resultStr":"{\"title\":\"On the number of reliable finite-element eigenmodes\",\"authors\":\"D. Givoli\",\"doi\":\"10.1002/CNM.1088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite-element (FE) approximation of linear elliptic eigenvalue problems is considered. An analysis based on a number of known estimates leads to the simple formula M=r0ed/(2p)N relating the total number of degrees of freedom N, the maximum relative error level e desired for the eigenvalues, and the number of ‘reliable’ modes M. (Here d is the spatial dimension and p is the polynomial degree of the FE space.) Moreover, a rough estimate for the numerical value of the constant r0 for a given application is found. This result supports a well-known rule of thumb. Copyright © 2008 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1088\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4