半定规划的三维莫尔库仑极限分析

K. Krabbenhøft, A. Lyamin, S. Sloan
{"title":"半定规划的三维莫尔库仑极限分析","authors":"K. Krabbenhøft, A. Lyamin, S. Sloan","doi":"10.1002/CNM.1018","DOIUrl":null,"url":null,"abstract":"Recently, Krabbenhoft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three-dimensional Mohr–Coulomb criterion in terms of positive-definite cones. The capabilities of this formulation when applied to large-scale three-dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior-point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1107-1119"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1018","citationCount":"127","resultStr":"{\"title\":\"Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming\",\"authors\":\"K. Krabbenhøft, A. Lyamin, S. Sloan\",\"doi\":\"10.1002/CNM.1018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Krabbenhoft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three-dimensional Mohr–Coulomb criterion in terms of positive-definite cones. The capabilities of this formulation when applied to large-scale three-dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior-point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"24 1\",\"pages\":\"1107-1119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1018\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

摘要

最近,Krabbenhoft等人。J.固体结构。2007;(44:1533-1549)提出了一个正定锥的三维莫尔-库仑判据的公式。研究了该公式应用于大尺度三维极限分析问题时的能力。在对一些理论和算法问题进行了简短的讨论之后,解决了三个常见但传统上很困难的地质力学问题,并提出了一种常见的原对偶内点算法(SeDuMi)。号码。数学。1999;(29:301-315))有详细的记录。尽管总体上令人鼓舞,但结果也揭示了一些困难,这些困难支持构建专门用于塑性问题的二次规划算法的想法。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming
Recently, Krabbenhoft et al. (Int. J. Solids Struct. 2007; 44:1533–1549) have presented a formulation of the three-dimensional Mohr–Coulomb criterion in terms of positive-definite cones. The capabilities of this formulation when applied to large-scale three-dimensional problems of limit analysis are investigated. Following a brief discussion on a number of theoretical and algorithmic issues, three common, but traditionally difficult, geomechanics problems are solved and the performance of a common primal–dual interior-point algorithm (SeDuMi (Appl. Numer. Math. 1999; 29:301–315)) is documented in detail. Although generally encouraging, the results also reveal several difficulties which support the idea of constructing a conic programming algorithm specifically dedicated to plasticity problems. Copyright © 2007 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信