有限变形下p型有限元的无体积锁紧特性

U. Heisserer, S. Hartmann, A. Düster, Z. Yosibash
{"title":"有限变形下p型有限元的无体积锁紧特性","authors":"U. Heisserer, S. Hartmann, A. Düster, Z. Yosibash","doi":"10.1002/CNM.1008","DOIUrl":null,"url":null,"abstract":"We demonstrate the locking-free properties of the displacement formulation of p-finite elements when applied to nearly incompressible Neo-Hookean material under finite deformations. For an axisymmetric model problem we provide semi-analytical solutions for a nearly incompressible Neo-Hookean material exploited to investigate the robustness of p-FEM with respect to volumetric locking. An analytical solution for the incompressible case is also derived to demonstrate the convergence of the compressible numerical solution towards the incompressible case when the compression modulus is increased.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"1 1","pages":"1019-1032"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1008","citationCount":"2","resultStr":"{\"title\":\"On volumetric locking‐free behaviour of p‐version finite elements under finite deformations\",\"authors\":\"U. Heisserer, S. Hartmann, A. Düster, Z. Yosibash\",\"doi\":\"10.1002/CNM.1008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the locking-free properties of the displacement formulation of p-finite elements when applied to nearly incompressible Neo-Hookean material under finite deformations. For an axisymmetric model problem we provide semi-analytical solutions for a nearly incompressible Neo-Hookean material exploited to investigate the robustness of p-FEM with respect to volumetric locking. An analytical solution for the incompressible case is also derived to demonstrate the convergence of the compressible numerical solution towards the incompressible case when the compression modulus is increased.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"1 1\",\"pages\":\"1019-1032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1008\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了p-有限元位移公式在有限变形下几乎不可压缩的Neo-Hookean材料的无锁性。对于轴对称模型问题,我们提供了近乎不可压缩的Neo-Hookean材料的半解析解,用于研究p-FEM在体积锁定方面的鲁棒性。导出了不可压缩情况的解析解,证明了当压缩模量增大时,可压缩数值解向不可压缩情况收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On volumetric locking‐free behaviour of p‐version finite elements under finite deformations
We demonstrate the locking-free properties of the displacement formulation of p-finite elements when applied to nearly incompressible Neo-Hookean material under finite deformations. For an axisymmetric model problem we provide semi-analytical solutions for a nearly incompressible Neo-Hookean material exploited to investigate the robustness of p-FEM with respect to volumetric locking. An analytical solution for the incompressible case is also derived to demonstrate the convergence of the compressible numerical solution towards the incompressible case when the compression modulus is increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信