扩展有限元的简单误差估计

S. Bordas, M. Duflot, Phong Le
{"title":"扩展有限元的简单误差估计","authors":"S. Bordas, M. Duflot, Phong Le","doi":"10.1002/CNM.1001","DOIUrl":null,"url":null,"abstract":"This short communication presents the idea of an a posteriori error estimate for enriched (extended) finite elements (XFEM). The enhanced strain field against which the XFEM strains are compared, is computed through extended moving least-squares smoothing constructed using the diffraction method to preserve the discontinuity. The error estimator is the L2 norm of the difference of the XFEM strain with the enhanced strain. We prove the concept of the proposed method on a 1D example with a singular solution and a 2D fracture mechanics example and conclude with some future work based on our paradigm.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"1 1","pages":"961-971"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1001","citationCount":"99","resultStr":"{\"title\":\"A simple error estimator for extended finite elements\",\"authors\":\"S. Bordas, M. Duflot, Phong Le\",\"doi\":\"10.1002/CNM.1001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This short communication presents the idea of an a posteriori error estimate for enriched (extended) finite elements (XFEM). The enhanced strain field against which the XFEM strains are compared, is computed through extended moving least-squares smoothing constructed using the diffraction method to preserve the discontinuity. The error estimator is the L2 norm of the difference of the XFEM strain with the enhanced strain. We prove the concept of the proposed method on a 1D example with a singular solution and a 2D fracture mechanics example and conclude with some future work based on our paradigm.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"1 1\",\"pages\":\"961-971\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1001\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

这种简短的交流提出了富(扩展)有限元(XFEM)的后验误差估计的思想。利用衍射法构造的扩展移动最小二乘平滑来计算XFEM应变对比的增强应变场,以保持不连续性。误差估计量为XFEM应变与增强应变之差的L2范数。我们用一维奇异解实例和二维断裂力学实例证明了所提出方法的概念,并总结了基于我们的范式的一些未来工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple error estimator for extended finite elements
This short communication presents the idea of an a posteriori error estimate for enriched (extended) finite elements (XFEM). The enhanced strain field against which the XFEM strains are compared, is computed through extended moving least-squares smoothing constructed using the diffraction method to preserve the discontinuity. The error estimator is the L2 norm of the difference of the XFEM strain with the enhanced strain. We prove the concept of the proposed method on a 1D example with a singular solution and a 2D fracture mechanics example and conclude with some future work based on our paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信