{"title":"基于涡解析计算数据的OpenType流腔内自振荡过程分析","authors":"B. N. Dan’kov, A. P. Duben’, T. K. Kozubskaya","doi":"10.1134/S0015462823600517","DOIUrl":null,"url":null,"abstract":"<p>The mechanisms of self-oscillation processes occurring in cavities of open flow type are considered and substantiated on the basis of a detailed investigation of the phenomena of hydrodynamic, flow-rate, wave, and resonance nature. The theoretical conclusions are substantiated by an analysis of the data of numerical experiments performed by different authors.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"58 4","pages":"659 - 669"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Self-Oscillation Processes in a Cavity with a Flow of OpenType on the Basis of the Data of Vortex-Resolving Calculations\",\"authors\":\"B. N. Dan’kov, A. P. Duben’, T. K. Kozubskaya\",\"doi\":\"10.1134/S0015462823600517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanisms of self-oscillation processes occurring in cavities of open flow type are considered and substantiated on the basis of a detailed investigation of the phenomena of hydrodynamic, flow-rate, wave, and resonance nature. The theoretical conclusions are substantiated by an analysis of the data of numerical experiments performed by different authors.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"58 4\",\"pages\":\"659 - 669\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462823600517\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462823600517","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Analysis of Self-Oscillation Processes in a Cavity with a Flow of OpenType on the Basis of the Data of Vortex-Resolving Calculations
The mechanisms of self-oscillation processes occurring in cavities of open flow type are considered and substantiated on the basis of a detailed investigation of the phenomena of hydrodynamic, flow-rate, wave, and resonance nature. The theoretical conclusions are substantiated by an analysis of the data of numerical experiments performed by different authors.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.