表征是伴随自同态的

IF 0.5 4区 数学
Gabriel C. Drummond-Cole, Joseph Hirsh, Damien Lejay
{"title":"表征是伴随自同态的","authors":"Gabriel C. Drummond-Cole,&nbsp;Joseph Hirsh,&nbsp;Damien Lejay","doi":"10.1007/s40062-019-00252-1","DOIUrl":null,"url":null,"abstract":"<p>The functor that takes a ring to its category of modules has an adjoint if one remembers the forgetful functor to abelian groups: the <i>endomorphism ring</i> of linear natural transformations. This uses the self-enrichment of the category of abelian groups. If one considers enrichments into symmetric sequences or even bisymmetric sequences, one can produce an <i>endomorphism operad</i> or an <i>endomorphism properad</i>. In this note, we show that more generally, given a category <img> enriched in a monoidal category <img>, the functor that associates to a monoid in <img> its category of representations in <img> is adjoint to the functor that computes the <i>endomorphism monoid</i> of any functor with domain <img>. After describing the first results of the theory we give several examples of applications.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 2","pages":"377 - 393"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00252-1","citationCount":"1","resultStr":"{\"title\":\"Representations are adjoint to endomorphisms\",\"authors\":\"Gabriel C. Drummond-Cole,&nbsp;Joseph Hirsh,&nbsp;Damien Lejay\",\"doi\":\"10.1007/s40062-019-00252-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The functor that takes a ring to its category of modules has an adjoint if one remembers the forgetful functor to abelian groups: the <i>endomorphism ring</i> of linear natural transformations. This uses the self-enrichment of the category of abelian groups. If one considers enrichments into symmetric sequences or even bisymmetric sequences, one can produce an <i>endomorphism operad</i> or an <i>endomorphism properad</i>. In this note, we show that more generally, given a category <img> enriched in a monoidal category <img>, the functor that associates to a monoid in <img> its category of representations in <img> is adjoint to the functor that computes the <i>endomorphism monoid</i> of any functor with domain <img>. After describing the first results of the theory we give several examples of applications.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 2\",\"pages\":\"377 - 393\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00252-1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00252-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00252-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

带一个环到它的模的范畴的函子有一个伴随子,如果你还记得那个被遗忘了的关于阿贝尔群的函子:线性自然变换的自同态环。这使用了阿贝尔群范畴的自充实。如果考虑对称序列甚至双对称序列的富集,就可以得到一个自同态操作符或自同态性质。在这篇笔记中,我们更一般地证明了,给定一个丰富于一元范畴的范畴,在其表示范畴中关联到一个一元的函子与计算任何有定义域的函子的自同态一元的函子是伴随的。在描述了该理论的初步结果之后,我们给出了几个应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Representations are adjoint to endomorphisms

Representations are adjoint to endomorphisms

The functor that takes a ring to its category of modules has an adjoint if one remembers the forgetful functor to abelian groups: the endomorphism ring of linear natural transformations. This uses the self-enrichment of the category of abelian groups. If one considers enrichments into symmetric sequences or even bisymmetric sequences, one can produce an endomorphism operad or an endomorphism properad. In this note, we show that more generally, given a category enriched in a monoidal category , the functor that associates to a monoid in its category of representations in is adjoint to the functor that computes the endomorphism monoid of any functor with domain . After describing the first results of the theory we give several examples of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信