R Narzary, Tani Chekke, S Ngadong, Biswarup Satpati, S Bayan, Upamanyu Das
{"title":"缺陷介导的自供电紫外光检测化学定制氧化锡纳米颗粒","authors":"R Narzary, Tani Chekke, S Ngadong, Biswarup Satpati, S Bayan, Upamanyu Das","doi":"10.1007/s13538-023-01356-z","DOIUrl":null,"url":null,"abstract":"<div><p>We have reported about the synthesis of tin oxide (SnO<sub>2</sub>) nanoparticles using simple and low-cost hydrothermal method followed by fabrication of self-powered ultraviolet (UV) photodetectors (PDs). The structural and morphological characteristics of the nanoparticles have been analyzed with X-ray diffraction and electron microscopy techniques. In addition, the existence of native defects in SnO<sub>2</sub> has been realized from spectroscopic techniques. Further, it has been found that the nanoparticles can exhibit significant open-circuit voltage, and the observation of enhanced open-circuit voltage under illumination of UV light makes the system promising for self-powered (SP) photodetectors. The origin of the self-powered UV photodetection has been assigned to capturing of photogenerated carriers by the native defects of SnO<sub>2</sub> nanoparticles. The observation of self-power UV detection in such system can lead to the fabrication of futuristic UV detectors without bothering the existing issue of energy crisis.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"53 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-Mediated Self-Powered Ultraviolet Photodetection of Chemically Tailored Tin-Oxide Nanoparticles\",\"authors\":\"R Narzary, Tani Chekke, S Ngadong, Biswarup Satpati, S Bayan, Upamanyu Das\",\"doi\":\"10.1007/s13538-023-01356-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have reported about the synthesis of tin oxide (SnO<sub>2</sub>) nanoparticles using simple and low-cost hydrothermal method followed by fabrication of self-powered ultraviolet (UV) photodetectors (PDs). The structural and morphological characteristics of the nanoparticles have been analyzed with X-ray diffraction and electron microscopy techniques. In addition, the existence of native defects in SnO<sub>2</sub> has been realized from spectroscopic techniques. Further, it has been found that the nanoparticles can exhibit significant open-circuit voltage, and the observation of enhanced open-circuit voltage under illumination of UV light makes the system promising for self-powered (SP) photodetectors. The origin of the self-powered UV photodetection has been assigned to capturing of photogenerated carriers by the native defects of SnO<sub>2</sub> nanoparticles. The observation of self-power UV detection in such system can lead to the fabrication of futuristic UV detectors without bothering the existing issue of energy crisis.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"53 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-023-01356-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-023-01356-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Defect-Mediated Self-Powered Ultraviolet Photodetection of Chemically Tailored Tin-Oxide Nanoparticles
We have reported about the synthesis of tin oxide (SnO2) nanoparticles using simple and low-cost hydrothermal method followed by fabrication of self-powered ultraviolet (UV) photodetectors (PDs). The structural and morphological characteristics of the nanoparticles have been analyzed with X-ray diffraction and electron microscopy techniques. In addition, the existence of native defects in SnO2 has been realized from spectroscopic techniques. Further, it has been found that the nanoparticles can exhibit significant open-circuit voltage, and the observation of enhanced open-circuit voltage under illumination of UV light makes the system promising for self-powered (SP) photodetectors. The origin of the self-powered UV photodetection has been assigned to capturing of photogenerated carriers by the native defects of SnO2 nanoparticles. The observation of self-power UV detection in such system can lead to the fabrication of futuristic UV detectors without bothering the existing issue of energy crisis.
期刊介绍:
The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.