咪唑-1,4-恶嗪的简易合成方法及其毒性评价

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Burak Kuzu, Hasan Genç, Mehmet Taşpinar, Meltem Tan, Nurettin Menges
{"title":"咪唑-1,4-恶嗪的简易合成方法及其毒性评价","authors":"Burak Kuzu,&nbsp;Hasan Genç,&nbsp;Mehmet Taşpinar,&nbsp;Meltem Tan,&nbsp;Nurettin Menges","doi":"10.1002/hc.21412","DOIUrl":null,"url":null,"abstract":"<p>Imidazo-1,5-alkynyl alcohol derivatives were synthesized, and they were cyclized to imidazo-1,4-oxazines by means of cesium carbonate. Propargyl-allene isomerization was examined, and the reaction mechanism was proposed. Moreover, cytotoxicity of synthesized molecules against LN405 cell lines was investigated by means of structure-activity relationship (SAR). With SAR study, toxicities of some functional groups have been shown. In addition, two lead compounds were tested against DNA damaging.</p>","PeriodicalId":12816,"journal":{"name":"Heteroatom Chemistry","volume":"29 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hc.21412","citationCount":"9","resultStr":"{\"title\":\"An easy synthetic protocol for imidazo-1,4-oxazines and evaluation of their toxicities\",\"authors\":\"Burak Kuzu,&nbsp;Hasan Genç,&nbsp;Mehmet Taşpinar,&nbsp;Meltem Tan,&nbsp;Nurettin Menges\",\"doi\":\"10.1002/hc.21412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Imidazo-1,5-alkynyl alcohol derivatives were synthesized, and they were cyclized to imidazo-1,4-oxazines by means of cesium carbonate. Propargyl-allene isomerization was examined, and the reaction mechanism was proposed. Moreover, cytotoxicity of synthesized molecules against LN405 cell lines was investigated by means of structure-activity relationship (SAR). With SAR study, toxicities of some functional groups have been shown. In addition, two lead compounds were tested against DNA damaging.</p>\",\"PeriodicalId\":12816,\"journal\":{\"name\":\"Heteroatom Chemistry\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/hc.21412\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heteroatom Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hc.21412\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heteroatom Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hc.21412","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

合成了咪唑-1,5-炔醇衍生物,并以碳酸铯环化得到咪唑-1,4-恶嗪。研究了丙炔与丙烯的异构化反应,并提出了反应机理。此外,利用构效关系(SAR)研究了合成的分子对LN405细胞株的细胞毒性。在SAR研究中,一些官能团的毒性已被证实。此外,还对两种先导化合物进行了DNA损伤测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An easy synthetic protocol for imidazo-1,4-oxazines and evaluation of their toxicities

Imidazo-1,5-alkynyl alcohol derivatives were synthesized, and they were cyclized to imidazo-1,4-oxazines by means of cesium carbonate. Propargyl-allene isomerization was examined, and the reaction mechanism was proposed. Moreover, cytotoxicity of synthesized molecules against LN405 cell lines was investigated by means of structure-activity relationship (SAR). With SAR study, toxicities of some functional groups have been shown. In addition, two lead compounds were tested against DNA damaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heteroatom Chemistry
Heteroatom Chemistry 化学-化学综合
CiteScore
1.20
自引率
0.00%
发文量
5
审稿时长
6 months
期刊介绍: Heteroatom Chemistry brings together a broad, interdisciplinary group of chemists who work with compounds containing main-group elements of groups 13 through 17 of the Periodic Table, and certain other related elements. The fundamental reactivity under investigation should, in all cases, be concentrated about the heteroatoms. It does not matter whether the compounds being studied are acyclic or cyclic; saturated or unsaturated; monomeric, polymeric or solid state in nature; inorganic, organic, or naturally occurring, so long as the heteroatom is playing an essential role. Computational, experimental, and combined studies are equally welcome. Subject areas include (but are by no means limited to): -Reactivity about heteroatoms for accessing new products or synthetic pathways -Unusual valency main-group element compounds and their properties -Highly strained (e.g. bridged) main-group element compounds and their properties -Photochemical or thermal cleavage of heteroatom bonds and the resulting reactivity -Uncommon and structurally interesting heteroatom-containing species (including those containing multiple bonds and catenation) -Stereochemistry of compounds due to the presence of heteroatoms -Neighboring group effects of heteroatoms on the properties of compounds -Main-group element compounds as analogues of transition metal compounds -Variations and new results from established and named reactions (including Wittig, Kabachnik–Fields, Pudovik, Arbuzov, Hirao, and Mitsunobu) -Catalysis and green syntheses enabled by heteroatoms and their chemistry -Applications of compounds where the heteroatom plays a critical role. In addition to original research articles on heteroatom chemistry, the journal welcomes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信