路径颤振的组合模型

Pub Date : 2018-09-29 DOI:10.1007/s40062-018-0216-4
Manuel Rivera, Samson Saneblidze
{"title":"路径颤振的组合模型","authors":"Manuel Rivera,&nbsp;Samson Saneblidze","doi":"10.1007/s40062-018-0216-4","DOIUrl":null,"url":null,"abstract":"<p>We introduce the abstract notion of a necklical set in order to describe a functorial combinatorial model of the path fibration over the geometric realization of a path connected simplicial set. In particular, to any path connected simplicial set <i>X</i> we associate a necklical set <span>\\({\\widehat{{\\varvec{\\Omega }}}}X\\)</span> such that its geometric realization <span>\\(|{\\widehat{{\\varvec{\\Omega }}}}X|\\)</span>, a space built out of gluing cubical cells, is homotopy equivalent to the based loop space on |<i>X</i>| and the differential graded module of chains <span>\\(C_*({\\widehat{{\\varvec{\\Omega }}}}X)\\)</span> is a differential graded associative algebra generalizing Adams’ cobar construction.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0216-4","citationCount":"6","resultStr":"{\"title\":\"A combinatorial model for the path fibration\",\"authors\":\"Manuel Rivera,&nbsp;Samson Saneblidze\",\"doi\":\"10.1007/s40062-018-0216-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the abstract notion of a necklical set in order to describe a functorial combinatorial model of the path fibration over the geometric realization of a path connected simplicial set. In particular, to any path connected simplicial set <i>X</i> we associate a necklical set <span>\\\\({\\\\widehat{{\\\\varvec{\\\\Omega }}}}X\\\\)</span> such that its geometric realization <span>\\\\(|{\\\\widehat{{\\\\varvec{\\\\Omega }}}}X|\\\\)</span>, a space built out of gluing cubical cells, is homotopy equivalent to the based loop space on |<i>X</i>| and the differential graded module of chains <span>\\\\(C_*({\\\\widehat{{\\\\varvec{\\\\Omega }}}}X)\\\\)</span> is a differential graded associative algebra generalizing Adams’ cobar construction.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0216-4\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0216-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0216-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了描述路径连接简单集几何实现上的路径振动的函数组合模型,我们引入了路径集的抽象概念。特别地,对于任何路径连通的简单集X,我们关联了一个链集\({\widehat{{\varvec{\Omega }}}}X\),使得它的几何实现\(|{\widehat{{\varvec{\Omega }}}}X|\)(一个由胶合的立方单元构成的空间)同伦等价于X上的基环空间,并且链的微分梯度模\(C_*({\widehat{{\varvec{\Omega }}}}X)\)是推广Adams的cobar构造的微分梯度关联代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A combinatorial model for the path fibration

分享
查看原文
A combinatorial model for the path fibration

We introduce the abstract notion of a necklical set in order to describe a functorial combinatorial model of the path fibration over the geometric realization of a path connected simplicial set. In particular, to any path connected simplicial set X we associate a necklical set \({\widehat{{\varvec{\Omega }}}}X\) such that its geometric realization \(|{\widehat{{\varvec{\Omega }}}}X|\), a space built out of gluing cubical cells, is homotopy equivalent to the based loop space on |X| and the differential graded module of chains \(C_*({\widehat{{\varvec{\Omega }}}}X)\) is a differential graded associative algebra generalizing Adams’ cobar construction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信