秩缺平差模型的脊估计新方法

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Yingchun Song, Wenna Li, Caihua Deng, Xianqiang Cui
{"title":"秩缺平差模型的脊估计新方法","authors":"Yingchun Song,&nbsp;Wenna Li,&nbsp;Caihua Deng,&nbsp;Xianqiang Cui","doi":"10.1007/s40328-021-00366-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new ridge estimation method for solving rank-deficient least squares problems, in which a rank-deficient matrix is regarded as an almost rank-deficient. First, we give an algebraic derivation that the optimal solution can in fact be obtained by solving a related regularized problem on the optimal worst-case residual. Second, we give a new iterative algorithm to solve ridge parameter and prove its convergence. Finally, examples are given to demonstrate the efficiency of our new method. It is shown that the proposed algorithm can not only assess the stability of solution but also use additional prior information to guarantee the uniqueness of solutions to the problem of rank-deficient free-network adjustment.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":"57 1","pages":"1 - 22"},"PeriodicalIF":1.4000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new ridge estimation method on rank-deficient adjustment model\",\"authors\":\"Yingchun Song,&nbsp;Wenna Li,&nbsp;Caihua Deng,&nbsp;Xianqiang Cui\",\"doi\":\"10.1007/s40328-021-00366-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a new ridge estimation method for solving rank-deficient least squares problems, in which a rank-deficient matrix is regarded as an almost rank-deficient. First, we give an algebraic derivation that the optimal solution can in fact be obtained by solving a related regularized problem on the optimal worst-case residual. Second, we give a new iterative algorithm to solve ridge parameter and prove its convergence. Finally, examples are given to demonstrate the efficiency of our new method. It is shown that the proposed algorithm can not only assess the stability of solution but also use additional prior information to guarantee the uniqueness of solutions to the problem of rank-deficient free-network adjustment.</p></div>\",\"PeriodicalId\":48965,\"journal\":{\"name\":\"Acta Geodaetica et Geophysica\",\"volume\":\"57 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodaetica et Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40328-021-00366-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-021-00366-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解秩缺乏型最小二乘问题的脊估计方法,将秩缺乏型矩阵看作几乎秩缺乏型矩阵。首先,我们给出了一个代数推导,证明了最优解实际上可以通过求解最优最差残差的相关正则化问题得到。其次,给出了一种新的求解脊参数的迭代算法,并证明了其收敛性。最后,通过算例验证了该方法的有效性。结果表明,该算法不仅可以评估解的稳定性,而且可以利用附加的先验信息来保证缺秩自由网络平差问题解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new ridge estimation method on rank-deficient adjustment model

In this paper, we present a new ridge estimation method for solving rank-deficient least squares problems, in which a rank-deficient matrix is regarded as an almost rank-deficient. First, we give an algebraic derivation that the optimal solution can in fact be obtained by solving a related regularized problem on the optimal worst-case residual. Second, we give a new iterative algorithm to solve ridge parameter and prove its convergence. Finally, examples are given to demonstrate the efficiency of our new method. It is shown that the proposed algorithm can not only assess the stability of solution but also use additional prior information to guarantee the uniqueness of solutions to the problem of rank-deficient free-network adjustment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信