涡虫眼再生的时间调节

Michelle E. Deochand, T. Birkholz, Wendy S. Beane
{"title":"涡虫眼再生的时间调节","authors":"Michelle E. Deochand, T. Birkholz, Wendy S. Beane","doi":"10.1002/reg2.61","DOIUrl":null,"url":null,"abstract":"Abstract While tissue regeneration is typically studied using standard injury models, in nature injuries vary greatly in the amount and location of tissues lost. Planarians have the unique ability to regenerate from many different injuries (including from tiny fragments with no brain), allowing us to study the effects of different injuries on regeneration timelines. We followed the timing of regeneration for one organ, the eye, after multiple injury types that involved tissue loss (single‐ and double‐eye ablation, and decapitation) in Schmidtea mediterranea. Our data reveal that the timing of regeneration remained constant despite changing injury parameters. Optic tissue regrowth, nerve re‐innervation, and functional recovery were similar between injury types (even when the animal was simultaneously regrowing its brain). Changes in metabolic rate (i.e., starving vs. fed regenerates) also had no effect on regeneration timelines. In addition, our data suggest there may exist a role for optic nerve degeneration following eye ablation. Our results suggest that the temporal regulation of planarian eye regeneration is tightly controlled and resistant to variations in injury type.","PeriodicalId":90316,"journal":{"name":"Regeneration (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/reg2.61","citationCount":"11","resultStr":"{\"title\":\"Temporal regulation of planarian eye regeneration\",\"authors\":\"Michelle E. Deochand, T. Birkholz, Wendy S. Beane\",\"doi\":\"10.1002/reg2.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract While tissue regeneration is typically studied using standard injury models, in nature injuries vary greatly in the amount and location of tissues lost. Planarians have the unique ability to regenerate from many different injuries (including from tiny fragments with no brain), allowing us to study the effects of different injuries on regeneration timelines. We followed the timing of regeneration for one organ, the eye, after multiple injury types that involved tissue loss (single‐ and double‐eye ablation, and decapitation) in Schmidtea mediterranea. Our data reveal that the timing of regeneration remained constant despite changing injury parameters. Optic tissue regrowth, nerve re‐innervation, and functional recovery were similar between injury types (even when the animal was simultaneously regrowing its brain). Changes in metabolic rate (i.e., starving vs. fed regenerates) also had no effect on regeneration timelines. In addition, our data suggest there may exist a role for optic nerve degeneration following eye ablation. Our results suggest that the temporal regulation of planarian eye regeneration is tightly controlled and resistant to variations in injury type.\",\"PeriodicalId\":90316,\"journal\":{\"name\":\"Regeneration (Oxford, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/reg2.61\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regeneration (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/reg2.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regeneration (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/reg2.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

虽然通常使用标准损伤模型研究组织再生,但在自然损伤中,组织丢失的数量和位置差异很大。涡虫具有从许多不同的损伤中再生的独特能力(包括从没有大脑的微小碎片中),这使我们能够研究不同损伤对再生时间线的影响。我们在地中海Schmidtea研究中追踪了包括组织丢失(单眼和双眼消融以及斩首)在内的多种损伤类型后一个器官——眼睛的再生时间。我们的数据显示,尽管损伤参数发生变化,但再生时间保持不变。视觉组织再生、神经再生和功能恢复在不同损伤类型之间是相似的(即使当动物同时再生其大脑时)。代谢率的变化(即饥饿与进食再生)对再生时间也没有影响。此外,我们的数据表明,可能存在视神经退化的作用后,眼睛消融。我们的研究结果表明,涡虫眼再生的时间调控是严格控制的,并且对损伤类型的变化具有抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal regulation of planarian eye regeneration
Abstract While tissue regeneration is typically studied using standard injury models, in nature injuries vary greatly in the amount and location of tissues lost. Planarians have the unique ability to regenerate from many different injuries (including from tiny fragments with no brain), allowing us to study the effects of different injuries on regeneration timelines. We followed the timing of regeneration for one organ, the eye, after multiple injury types that involved tissue loss (single‐ and double‐eye ablation, and decapitation) in Schmidtea mediterranea. Our data reveal that the timing of regeneration remained constant despite changing injury parameters. Optic tissue regrowth, nerve re‐innervation, and functional recovery were similar between injury types (even when the animal was simultaneously regrowing its brain). Changes in metabolic rate (i.e., starving vs. fed regenerates) also had no effect on regeneration timelines. In addition, our data suggest there may exist a role for optic nerve degeneration following eye ablation. Our results suggest that the temporal regulation of planarian eye regeneration is tightly controlled and resistant to variations in injury type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信