{"title":"低雷诺数下旋转振荡圆柱体的数值研究","authors":"M. S. Mikhailov, Y. Bao, Z. L. Han, H. B. Zhu","doi":"10.1134/S0015462822601930","DOIUrl":null,"url":null,"abstract":"<p>A numerical study on the rotary oscillating cylinder subjected to a free stream has been conducted. Two-dimensional direct numerical simulations have been performed using the spectral/hp element method implemented in the Nektar++ source code. The numerical simulations have been conducted at low values of the Reynolds number of 200. This paper focuses on three characteristics of flow: the hydrodynamic forces exerted on the cylinder, the wake patterns behind the cylinder, and the lock on phenomenon. The numerical simulations on the rotary oscillating cylinder have been performed over the extensive range of non-dimensional forcing frequency, from 0.2 to 5 and two different values of the cylinder oscillation amplitude equal to 2π/3 and 5π/3. It was observed that increase in the oscillation amplitude greatly influences the wake pattern and the lock on phenomenon. It was found that a more than double increase in the cylinder oscillation amplitude produces a significant increase in the maximum mean drag and the fluctuating lift. The influence of the forcing frequency and oscillation amplitude on the drag and lift has been quantified. Furthermore, the effect of the forcing frequency and oscillation amplitude on the cylinder wake has been thoroughly analyzed.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"58 3","pages":"438 - 449"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Study of a Rotationally Oscillating Cylinder at Low Reynolds Numbers\",\"authors\":\"M. S. Mikhailov, Y. Bao, Z. L. Han, H. B. Zhu\",\"doi\":\"10.1134/S0015462822601930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A numerical study on the rotary oscillating cylinder subjected to a free stream has been conducted. Two-dimensional direct numerical simulations have been performed using the spectral/hp element method implemented in the Nektar++ source code. The numerical simulations have been conducted at low values of the Reynolds number of 200. This paper focuses on three characteristics of flow: the hydrodynamic forces exerted on the cylinder, the wake patterns behind the cylinder, and the lock on phenomenon. The numerical simulations on the rotary oscillating cylinder have been performed over the extensive range of non-dimensional forcing frequency, from 0.2 to 5 and two different values of the cylinder oscillation amplitude equal to 2π/3 and 5π/3. It was observed that increase in the oscillation amplitude greatly influences the wake pattern and the lock on phenomenon. It was found that a more than double increase in the cylinder oscillation amplitude produces a significant increase in the maximum mean drag and the fluctuating lift. The influence of the forcing frequency and oscillation amplitude on the drag and lift has been quantified. Furthermore, the effect of the forcing frequency and oscillation amplitude on the cylinder wake has been thoroughly analyzed.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"58 3\",\"pages\":\"438 - 449\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462822601930\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462822601930","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical Study of a Rotationally Oscillating Cylinder at Low Reynolds Numbers
A numerical study on the rotary oscillating cylinder subjected to a free stream has been conducted. Two-dimensional direct numerical simulations have been performed using the spectral/hp element method implemented in the Nektar++ source code. The numerical simulations have been conducted at low values of the Reynolds number of 200. This paper focuses on three characteristics of flow: the hydrodynamic forces exerted on the cylinder, the wake patterns behind the cylinder, and the lock on phenomenon. The numerical simulations on the rotary oscillating cylinder have been performed over the extensive range of non-dimensional forcing frequency, from 0.2 to 5 and two different values of the cylinder oscillation amplitude equal to 2π/3 and 5π/3. It was observed that increase in the oscillation amplitude greatly influences the wake pattern and the lock on phenomenon. It was found that a more than double increase in the cylinder oscillation amplitude produces a significant increase in the maximum mean drag and the fluctuating lift. The influence of the forcing frequency and oscillation amplitude on the drag and lift has been quantified. Furthermore, the effect of the forcing frequency and oscillation amplitude on the cylinder wake has been thoroughly analyzed.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.