{"title":"煤田火灾高分辨率电阻率探测与远程互联网监测","authors":"Cao Qinghua, Yan Shu, Xue Guo-qiang, Zhu Na","doi":"10.1002/CJG2.30031","DOIUrl":null,"url":null,"abstract":"For detecting, controlling and monitoring the coalfield fire area, we deeply integrated Internet innovative achievement into traditional geological exploration technology, and developed a permanent wireless sensor network remote monitoring system with the functions of detecting the range and central temperature of fire area, continuous collection, high temperature detection, remote control, etc. The new sensor node, which can be connected with pole-dipole device, was designed and deployed in the underground fire zone roadway for monitoring. The solar power supply device with protective circuit supplied continuous enough energy to on-site data collection network. The data was transmitted to monitoring center through the mobile connection network and Internet for remote control and monitoring. The developed monitoring system that was deployed simultaneously in 12 fire areas of Xinjiang has been working for 45 months, which means technical measures can guarantee long-term stability maintenance free operation of the monitoring system. Urumqi monitoring center has received more than 1.1 million field data that can be preserved permanently and queried freely after authorization. This information provided basic data for the management of large area of coal spontaneous combustion fire area in Xinjiang. The results show that fully utilizing the Internet for optimization and integration in geophysical exploration and monitoring has the vital significance to promote coal geological exploration innovation and production capacity.","PeriodicalId":55257,"journal":{"name":"地球物理学报","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CJG2.30031","citationCount":"1","resultStr":"{\"title\":\"HIGH RESOLUTION RESISTIVITY DETECTING AND REMOTE INTERNET MONITORING OF COALFIELD FIRE\",\"authors\":\"Cao Qinghua, Yan Shu, Xue Guo-qiang, Zhu Na\",\"doi\":\"10.1002/CJG2.30031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For detecting, controlling and monitoring the coalfield fire area, we deeply integrated Internet innovative achievement into traditional geological exploration technology, and developed a permanent wireless sensor network remote monitoring system with the functions of detecting the range and central temperature of fire area, continuous collection, high temperature detection, remote control, etc. The new sensor node, which can be connected with pole-dipole device, was designed and deployed in the underground fire zone roadway for monitoring. The solar power supply device with protective circuit supplied continuous enough energy to on-site data collection network. The data was transmitted to monitoring center through the mobile connection network and Internet for remote control and monitoring. The developed monitoring system that was deployed simultaneously in 12 fire areas of Xinjiang has been working for 45 months, which means technical measures can guarantee long-term stability maintenance free operation of the monitoring system. Urumqi monitoring center has received more than 1.1 million field data that can be preserved permanently and queried freely after authorization. This information provided basic data for the management of large area of coal spontaneous combustion fire area in Xinjiang. The results show that fully utilizing the Internet for optimization and integration in geophysical exploration and monitoring has the vital significance to promote coal geological exploration innovation and production capacity.\",\"PeriodicalId\":55257,\"journal\":{\"name\":\"地球物理学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CJG2.30031\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"地球物理学报\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/CJG2.30031\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"地球物理学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/CJG2.30031","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
HIGH RESOLUTION RESISTIVITY DETECTING AND REMOTE INTERNET MONITORING OF COALFIELD FIRE
For detecting, controlling and monitoring the coalfield fire area, we deeply integrated Internet innovative achievement into traditional geological exploration technology, and developed a permanent wireless sensor network remote monitoring system with the functions of detecting the range and central temperature of fire area, continuous collection, high temperature detection, remote control, etc. The new sensor node, which can be connected with pole-dipole device, was designed and deployed in the underground fire zone roadway for monitoring. The solar power supply device with protective circuit supplied continuous enough energy to on-site data collection network. The data was transmitted to monitoring center through the mobile connection network and Internet for remote control and monitoring. The developed monitoring system that was deployed simultaneously in 12 fire areas of Xinjiang has been working for 45 months, which means technical measures can guarantee long-term stability maintenance free operation of the monitoring system. Urumqi monitoring center has received more than 1.1 million field data that can be preserved permanently and queried freely after authorization. This information provided basic data for the management of large area of coal spontaneous combustion fire area in Xinjiang. The results show that fully utilizing the Internet for optimization and integration in geophysical exploration and monitoring has the vital significance to promote coal geological exploration innovation and production capacity.