基于随机地震反演的罗素流体因子直接估计方法

SUN Rui-Ying, YIN Xing-Yao, WANG Bao-Li, ZHANG Guang-Zhi
{"title":"基于随机地震反演的罗素流体因子直接估计方法","authors":"SUN Rui-Ying,&nbsp;YIN Xing-Yao,&nbsp;WANG Bao-Li,&nbsp;ZHANG Guang-Zhi","doi":"10.1002/cjg2.20230","DOIUrl":null,"url":null,"abstract":"<p>In this paper we propose Russell fluid factor direct estimation method based on stochastic seismic inversion. It is a Monte Carlo based strategy for non-linear inversion, which can effectively integrate the high-frequency information of well-logging data and have a higher resolution. And the method is formulated in a Bayesian framework. Firstly, we can calculate the Russell fluid factor using well-logging data and get the a priori information of fluid factor through sequential Gaussian simulation (SGS). Then we construct the likelihood function. Finally, we apply Metropolis algorithm in order to obtain an exhaustive description of the posteriori probability density. In this paper, we use the sequential Gaussian simulation (SGS) in a new implementation way, which can improve the computation speed. According to the numerical calculations, we can conclude that the final results match the model and real well-logging data well and have a higher resolution. In addition, Russell fluid factor we inverted is a sensitive indicator for reservoir fluid identification.</p>","PeriodicalId":100242,"journal":{"name":"Chinese Journal of Geophysics","volume":"59 3","pages":"246-254"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cjg2.20230","citationCount":"5","resultStr":"{\"title\":\"A DIRECT ESTIMATION METHOD FOR THE RUSSELL FLUID FACTOR BASED ON STOCHASTIC SEISMIC INVERSION\",\"authors\":\"SUN Rui-Ying,&nbsp;YIN Xing-Yao,&nbsp;WANG Bao-Li,&nbsp;ZHANG Guang-Zhi\",\"doi\":\"10.1002/cjg2.20230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we propose Russell fluid factor direct estimation method based on stochastic seismic inversion. It is a Monte Carlo based strategy for non-linear inversion, which can effectively integrate the high-frequency information of well-logging data and have a higher resolution. And the method is formulated in a Bayesian framework. Firstly, we can calculate the Russell fluid factor using well-logging data and get the a priori information of fluid factor through sequential Gaussian simulation (SGS). Then we construct the likelihood function. Finally, we apply Metropolis algorithm in order to obtain an exhaustive description of the posteriori probability density. In this paper, we use the sequential Gaussian simulation (SGS) in a new implementation way, which can improve the computation speed. According to the numerical calculations, we can conclude that the final results match the model and real well-logging data well and have a higher resolution. In addition, Russell fluid factor we inverted is a sensitive indicator for reservoir fluid identification.</p>\",\"PeriodicalId\":100242,\"journal\":{\"name\":\"Chinese Journal of Geophysics\",\"volume\":\"59 3\",\"pages\":\"246-254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cjg2.20230\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjg2.20230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjg2.20230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了基于随机地震反演的罗素流体因子直接估计方法。该方法是一种基于蒙特卡罗的非线性反演策略,能够有效地整合测井数据的高频信息,具有较高的分辨率。该方法在贝叶斯框架中进行了阐述。首先利用测井资料计算罗素流体因子,并通过序贯高斯模拟(SGS)得到流体因子的先验信息;然后我们构造似然函数。最后,我们应用Metropolis算法对后验概率密度进行了详尽的描述。本文采用序贯高斯模拟(SGS),以一种新的实现方式提高了计算速度。数值计算表明,最终结果与模型和实际测井资料吻合较好,具有较高的分辨率。此外,罗素流体因子是储层流体识别的敏感指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DIRECT ESTIMATION METHOD FOR THE RUSSELL FLUID FACTOR BASED ON STOCHASTIC SEISMIC INVERSION

In this paper we propose Russell fluid factor direct estimation method based on stochastic seismic inversion. It is a Monte Carlo based strategy for non-linear inversion, which can effectively integrate the high-frequency information of well-logging data and have a higher resolution. And the method is formulated in a Bayesian framework. Firstly, we can calculate the Russell fluid factor using well-logging data and get the a priori information of fluid factor through sequential Gaussian simulation (SGS). Then we construct the likelihood function. Finally, we apply Metropolis algorithm in order to obtain an exhaustive description of the posteriori probability density. In this paper, we use the sequential Gaussian simulation (SGS) in a new implementation way, which can improve the computation speed. According to the numerical calculations, we can conclude that the final results match the model and real well-logging data well and have a higher resolution. In addition, Russell fluid factor we inverted is a sensitive indicator for reservoir fluid identification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信