在还原氧化石墨烯包裹的CsPbI3纳米晶体上有效地将CO2还原为甲酸盐

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minh Tam Hoang, Chen Han, Zhipeng Ma, Xin Mao, Yang Yang, Sepideh Sadat Madani, Paul Shaw, Yongchao Yang, Lingyi Peng, Cui Ying Toe, Jian Pan, Rose Amal, Aijun Du, Tuquabo Tesfamichael, Zhaojun Han, Hongxia Wang
{"title":"在还原氧化石墨烯包裹的CsPbI3纳米晶体上有效地将CO2还原为甲酸盐","authors":"Minh Tam Hoang,&nbsp;Chen Han,&nbsp;Zhipeng Ma,&nbsp;Xin Mao,&nbsp;Yang Yang,&nbsp;Sepideh Sadat Madani,&nbsp;Paul Shaw,&nbsp;Yongchao Yang,&nbsp;Lingyi Peng,&nbsp;Cui Ying Toe,&nbsp;Jian Pan,&nbsp;Rose Amal,&nbsp;Aijun Du,&nbsp;Tuquabo Tesfamichael,&nbsp;Zhaojun Han,&nbsp;Hongxia Wang","doi":"10.1007/s40820-023-01132-3","DOIUrl":null,"url":null,"abstract":"<div><div>\n <span>AbstractSection</span>\n Highlights\n \n <ul>\n <li>\n <p>A rational design of metal halide perovskites for achieving efficient CO<sub>2</sub> reduction reaction was demonstrated.</p>\n </li>\n <li>\n <p>The stability of CsPbI<sub>3</sub> perovskite nanocrystal (NCs) in aqueous electrolyte was improved by compositing with reduced graphene oxide (rGO).</p>\n </li>\n <li>\n <p>The CsPbI<sub>3</sub>/rGO catalyst exhibited &gt; 92% Faradaic efficiency toward formate production with high current density which was associated with the synergistic effects between the CsPbI<sub>3</sub> NCs and rGO.</p>\n </li>\n </ul>\n \n \n <span>AbstractSection</span>\n Abstract\n <p>Transformation of greenhouse gas (CO<sub>2</sub>) into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis. Metal halide perovskite catalysts have shown their potential in promoting CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR), however, their low phase stability has limited their application perspective. Herein, we present a reduced graphene oxide (rGO) wrapped CsPbI<sub>3</sub> perovskite nanocrystal (NC) CO<sub>2</sub>RR catalyst (CsPbI<sub>3</sub>/rGO), demonstrating enhanced stability in the aqueous electrolyte. The CsPbI<sub>3</sub>/rGO catalyst exhibited &gt; 92% Faradaic efficiency toward formate production at a CO<sub>2</sub>RR current density of ~ 12.7 mA cm<sup>−2</sup>. Comprehensive characterizations revealed the superior performance of the CsPbI<sub>3</sub>/rGO catalyst originated from the synergistic effects between the CsPbI<sub>3</sub> NCs and rGO, i.e., rGO stabilized the α-CsPbI<sub>3</sub> phase and tuned the charge distribution, thus lowered the energy barrier for the protonation process and the formation of *HCOO intermediate, which resulted in high CO<sub>2</sub>RR selectivity toward formate. This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO<sub>2</sub>RR toward valuable fuels.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n \n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01132-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient CO2 Reduction to Formate on CsPbI3 Nanocrystals Wrapped with Reduced Graphene Oxide\",\"authors\":\"Minh Tam Hoang,&nbsp;Chen Han,&nbsp;Zhipeng Ma,&nbsp;Xin Mao,&nbsp;Yang Yang,&nbsp;Sepideh Sadat Madani,&nbsp;Paul Shaw,&nbsp;Yongchao Yang,&nbsp;Lingyi Peng,&nbsp;Cui Ying Toe,&nbsp;Jian Pan,&nbsp;Rose Amal,&nbsp;Aijun Du,&nbsp;Tuquabo Tesfamichael,&nbsp;Zhaojun Han,&nbsp;Hongxia Wang\",\"doi\":\"10.1007/s40820-023-01132-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>\\n <span>AbstractSection</span>\\n Highlights\\n \\n <ul>\\n <li>\\n <p>A rational design of metal halide perovskites for achieving efficient CO<sub>2</sub> reduction reaction was demonstrated.</p>\\n </li>\\n <li>\\n <p>The stability of CsPbI<sub>3</sub> perovskite nanocrystal (NCs) in aqueous electrolyte was improved by compositing with reduced graphene oxide (rGO).</p>\\n </li>\\n <li>\\n <p>The CsPbI<sub>3</sub>/rGO catalyst exhibited &gt; 92% Faradaic efficiency toward formate production with high current density which was associated with the synergistic effects between the CsPbI<sub>3</sub> NCs and rGO.</p>\\n </li>\\n </ul>\\n \\n \\n <span>AbstractSection</span>\\n Abstract\\n <p>Transformation of greenhouse gas (CO<sub>2</sub>) into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis. Metal halide perovskite catalysts have shown their potential in promoting CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR), however, their low phase stability has limited their application perspective. Herein, we present a reduced graphene oxide (rGO) wrapped CsPbI<sub>3</sub> perovskite nanocrystal (NC) CO<sub>2</sub>RR catalyst (CsPbI<sub>3</sub>/rGO), demonstrating enhanced stability in the aqueous electrolyte. The CsPbI<sub>3</sub>/rGO catalyst exhibited &gt; 92% Faradaic efficiency toward formate production at a CO<sub>2</sub>RR current density of ~ 12.7 mA cm<sup>−2</sup>. Comprehensive characterizations revealed the superior performance of the CsPbI<sub>3</sub>/rGO catalyst originated from the synergistic effects between the CsPbI<sub>3</sub> NCs and rGO, i.e., rGO stabilized the α-CsPbI<sub>3</sub> phase and tuned the charge distribution, thus lowered the energy barrier for the protonation process and the formation of *HCOO intermediate, which resulted in high CO<sub>2</sub>RR selectivity toward formate. This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO<sub>2</sub>RR toward valuable fuels.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n \\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-023-01132-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01132-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01132-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:重点介绍了金属卤化物钙钛矿的合理设计,以实现高效的CO2还原反应。通过与还原氧化石墨烯(rGO)复合,提高了CsPbI3钙钛矿纳米晶体(NCs)在水溶液中的稳定性。CsPbI3/rGO催化剂在高电流密度下具有92%的法拉第产甲酸效率,这与CsPbI3 NCs和rGO之间的协同作用有关。摘要将温室气体(CO2)转化为有价值的化学物质和燃料是解决全球气候变化和能源危机的一条有前途的途径。金属卤化物钙钛矿催化剂在促进CO2还原反应(CO2RR)方面已显示出其潜力,但其相稳定性较低限制了其应用前景。在此,我们提出了一种还原氧化石墨烯(rGO)包裹CsPbI3钙钛矿纳米晶(NC) CO2RR催化剂(CsPbI3/rGO),证明其在水性电解质中的稳定性增强。CsPbI3/rGO催化剂在CO2RR电流密度为~ 12.7 mA cm−2时,生成甲酸酯的法拉第效率为92%。综合表征表明,CsPbI3/rGO催化剂的优异性能源于CsPbI3 NCs与rGO的协同作用,即rGO稳定了α-CsPbI3相,调整了电荷分布,从而降低了质子化过程和*HCOO中间体形成的能垒,对甲酸盐具有较高的CO2RR选择性。这项工作显示了合理设计坚固的金属卤化物钙钛矿以实现高效CO2RR的有价值燃料的有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient CO2 Reduction to Formate on CsPbI3 Nanocrystals Wrapped with Reduced Graphene Oxide
AbstractSection Highlights
  • A rational design of metal halide perovskites for achieving efficient CO2 reduction reaction was demonstrated.

  • The stability of CsPbI3 perovskite nanocrystal (NCs) in aqueous electrolyte was improved by compositing with reduced graphene oxide (rGO).

  • The CsPbI3/rGO catalyst exhibited > 92% Faradaic efficiency toward formate production with high current density which was associated with the synergistic effects between the CsPbI3 NCs and rGO.

AbstractSection Abstract

Transformation of greenhouse gas (CO2) into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis. Metal halide perovskite catalysts have shown their potential in promoting CO2 reduction reaction (CO2RR), however, their low phase stability has limited their application perspective. Herein, we present a reduced graphene oxide (rGO) wrapped CsPbI3 perovskite nanocrystal (NC) CO2RR catalyst (CsPbI3/rGO), demonstrating enhanced stability in the aqueous electrolyte. The CsPbI3/rGO catalyst exhibited > 92% Faradaic efficiency toward formate production at a CO2RR current density of ~ 12.7 mA cm−2. Comprehensive characterizations revealed the superior performance of the CsPbI3/rGO catalyst originated from the synergistic effects between the CsPbI3 NCs and rGO, i.e., rGO stabilized the α-CsPbI3 phase and tuned the charge distribution, thus lowered the energy barrier for the protonation process and the formation of *HCOO intermediate, which resulted in high CO2RR selectivity toward formate. This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO2RR toward valuable fuels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信