关于\(\operatorname{CAT}(0)\)空间中平均映射的一个概念

IF 0.6 4区 数学 Q3 MATHEMATICS
A. Bërdëllima
{"title":"关于\\(\\operatorname{CAT}(0)\\)空间中平均映射的一个概念","authors":"A. Bërdëllima","doi":"10.1134/S0016266322010038","DOIUrl":null,"url":null,"abstract":"<p> We introduce a notion of averaged mappings in the broader class of <span>\\(\\operatorname{CAT}(0)\\)</span> spaces. We call these mappings <span>\\(\\alpha\\)</span>-firmly nonexpansive and develop basic calculus rules for ones that are quasi-<span>\\(\\alpha\\)</span>-firmly nonexpansive and have a common fixed point. We show that the iterates <span>\\(x_n:=Tx_{n-1}\\)</span> of a nonexpansive mapping <span>\\(T\\)</span> converge weakly to an element in <span>\\(\\operatorname{Fix} T\\)</span> whenever <span>\\(T\\)</span> is quasi-<span>\\(\\alpha\\)</span>-firmly nonexpansive. Moreover, <span>\\(P_{\\operatorname{Fix} T}x_n\\)</span> converge strongly to this weak limit. Our theory is illustrated with two classical examples of cyclic and averaged projections. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Notion of Averaged Mappings in \\\\(\\\\operatorname{CAT}(0)\\\\) Spaces\",\"authors\":\"A. Bërdëllima\",\"doi\":\"10.1134/S0016266322010038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We introduce a notion of averaged mappings in the broader class of <span>\\\\(\\\\operatorname{CAT}(0)\\\\)</span> spaces. We call these mappings <span>\\\\(\\\\alpha\\\\)</span>-firmly nonexpansive and develop basic calculus rules for ones that are quasi-<span>\\\\(\\\\alpha\\\\)</span>-firmly nonexpansive and have a common fixed point. We show that the iterates <span>\\\\(x_n:=Tx_{n-1}\\\\)</span> of a nonexpansive mapping <span>\\\\(T\\\\)</span> converge weakly to an element in <span>\\\\(\\\\operatorname{Fix} T\\\\)</span> whenever <span>\\\\(T\\\\)</span> is quasi-<span>\\\\(\\\\alpha\\\\)</span>-firmly nonexpansive. Moreover, <span>\\\\(P_{\\\\operatorname{Fix} T}x_n\\\\)</span> converge strongly to this weak limit. Our theory is illustrated with two classical examples of cyclic and averaged projections. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322010038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322010038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在更广泛的\(\operatorname{CAT}(0)\)空间类中引入了平均映射的概念。我们称这些映射为\(\alpha\) -坚定非扩张性,并为那些拟\(\alpha\) -坚定非扩张性且有一个公共不动点的映射发展了基本的微积分规则。我们证明了当\(T\)是准\(\alpha\) -坚定非可扩张时,非可扩张映射\(T\)的迭代\(x_n:=Tx_{n-1}\)弱收敛到\(\operatorname{Fix} T\)中的一个元素。而且,\(P_{\operatorname{Fix} T}x_n\)强收敛于这个弱极限。我们的理论用两个经典的循环和平均投影的例子来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Notion of Averaged Mappings in \(\operatorname{CAT}(0)\) Spaces

We introduce a notion of averaged mappings in the broader class of \(\operatorname{CAT}(0)\) spaces. We call these mappings \(\alpha\)-firmly nonexpansive and develop basic calculus rules for ones that are quasi-\(\alpha\)-firmly nonexpansive and have a common fixed point. We show that the iterates \(x_n:=Tx_{n-1}\) of a nonexpansive mapping \(T\) converge weakly to an element in \(\operatorname{Fix} T\) whenever \(T\) is quasi-\(\alpha\)-firmly nonexpansive. Moreover, \(P_{\operatorname{Fix} T}x_n\) converge strongly to this weak limit. Our theory is illustrated with two classical examples of cyclic and averaged projections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信