关于Hausdorff维数小值的bourgin - kontorovich定理的强化

IF 0.6 4区 数学 Q3 MATHEMATICS
I. D. Kan
{"title":"关于Hausdorff维数小值的bourgin - kontorovich定理的强化","authors":"I. D. Kan","doi":"10.1134/S0016266322010051","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\mathfrak{D}_\\mathbf{A}(N)\\)</span> be the set of all integers not exceeding <span>\\(N\\)</span> and equal to irreducible denominators of positive rational numbers with finite continued fraction expansions in which all partial quotients belong to a finite number alphabet <span>\\(\\mathbf{A}\\)</span>. A new lower bound for the cardinality <span>\\(|\\mathfrak{D}_\\mathbf{A}(N)|\\)</span> is obtained, whose nontrivial part improves that known previously by up to 28%. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strengthening of the Bourgain–Kontorovich Theorem on Small Values of Hausdorff Dimension\",\"authors\":\"I. D. Kan\",\"doi\":\"10.1134/S0016266322010051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(\\\\mathfrak{D}_\\\\mathbf{A}(N)\\\\)</span> be the set of all integers not exceeding <span>\\\\(N\\\\)</span> and equal to irreducible denominators of positive rational numbers with finite continued fraction expansions in which all partial quotients belong to a finite number alphabet <span>\\\\(\\\\mathbf{A}\\\\)</span>. A new lower bound for the cardinality <span>\\\\(|\\\\mathfrak{D}_\\\\mathbf{A}(N)|\\\\)</span> is obtained, whose nontrivial part improves that known previously by up to 28%. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322010051\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322010051","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设\(\mathfrak{D}_\mathbf{A}(N)\)为不超过\(N\)的所有整数的集合,并且等于具有有限连分数展开式的正有理数的不可约分母,其中所有部分商都属于有限数字字母\(\mathbf{A}\)。获得了基数\(|\mathfrak{D}_\mathbf{A}(N)|\)的新下界,其非平凡部分比先前已知的下界提高了28%.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strengthening of the Bourgain–Kontorovich Theorem on Small Values of Hausdorff Dimension

Let \(\mathfrak{D}_\mathbf{A}(N)\) be the set of all integers not exceeding \(N\) and equal to irreducible denominators of positive rational numbers with finite continued fraction expansions in which all partial quotients belong to a finite number alphabet \(\mathbf{A}\). A new lower bound for the cardinality \(|\mathfrak{D}_\mathbf{A}(N)|\) is obtained, whose nontrivial part improves that known previously by up to 28%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信