L. Menviel, Jimin Yu, F. Joos, A. Mouchet, K. Meissner, M. England
{"title":"从碳同位素推断末次盛冰期深海通风不良:数据模型比较研究","authors":"L. Menviel, Jimin Yu, F. Joos, A. Mouchet, K. Meissner, M. England","doi":"10.1002/2016PA003024","DOIUrl":null,"url":null,"abstract":"Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO₂ variations. We find that the mean ocean δ¹³C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ¹³C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere.","PeriodicalId":19882,"journal":{"name":"Paleoceanography","volume":"32 1","pages":"2-17"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/2016PA003024","citationCount":"89","resultStr":"{\"title\":\"Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study\",\"authors\":\"L. Menviel, Jimin Yu, F. Joos, A. Mouchet, K. Meissner, M. England\",\"doi\":\"10.1002/2016PA003024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO₂ variations. We find that the mean ocean δ¹³C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ¹³C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere.\",\"PeriodicalId\":19882,\"journal\":{\"name\":\"Paleoceanography\",\"volume\":\"32 1\",\"pages\":\"2-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/2016PA003024\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/2016PA003024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/2016PA003024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study
Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO₂ variations. We find that the mean ocean δ¹³C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ¹³C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere.