Amouroux Isabelle, Jean-Louis Gonzalez, Stephane Guesdon, María Jesús Belzunce-Segarra, Philippe Bersuder, Thi Bolam, Miguel Caetano, Margarida Correia Dos Santos, Joana Larreta, Luc Lebrun, Barbara Marras, Vanessa Millán Gabet, Brendan McHugh, Iratxe Menchaca, Florence Menet-Nédélec, Natalia Montero, Olivier Perceval, Olivier Pierre-Duplessix, Fiona Regan, Jose Germán Rodríguez, Marta Rodrigo Sanz, Marco Schintu, Blánaid White, Hao Zhang
{"title":"在《水框架指令》化学状况评估中使用薄片扩散梯度(DGT)标记浓度的新方法:根据镉、镍和铅的 DGT 调整环境质量标准","authors":"Amouroux Isabelle, Jean-Louis Gonzalez, Stephane Guesdon, María Jesús Belzunce-Segarra, Philippe Bersuder, Thi Bolam, Miguel Caetano, Margarida Correia Dos Santos, Joana Larreta, Luc Lebrun, Barbara Marras, Vanessa Millán Gabet, Brendan McHugh, Iratxe Menchaca, Florence Menet-Nédélec, Natalia Montero, Olivier Perceval, Olivier Pierre-Duplessix, Fiona Regan, Jose Germán Rodríguez, Marta Rodrigo Sanz, Marco Schintu, Blánaid White, Hao Zhang","doi":"10.1186/s12302-023-00733-4","DOIUrl":null,"url":null,"abstract":"<div><p>Integrative passive samplers, such as DGT (Diffusive Gradients in Thin-films), are identified in European Technical Guidance Documents as promising tools to improve the quality of the assessment, in the context of the WFD (EU Water Framework Directive). However, DGT results cannot yet be used directly in a regulatory framework to assess the chemical status of water bodies, as DGT labile concentrations cannot be directly compared to the metal AA-EQS<sub>marine water</sub> (Annual Average Environmental Quality Standard) established by the WFD, which are defined in the dissolved concentration. Therefore, prior to using DGT results in a regulatory context, for cadmium, nickel and lead, an adaptation of existing AA-EQS<sub>marine water</sub> for DGTs should be pursued, ensuring at least the same level of protection. In this sense, in the framework of the MONITOOL project, a robust database of dissolved and labile metal concentrations in transitional and coastal waters, for adapting the existing AA-EQS<sub>marine water</sub> for DGT technique, was obtained. Building on these results, this study proposes a methodology and provides values and equations for using DGT results for the chemical status assessment of marine waters, by adapting the EQS<sub>marine water</sub> to adapted EQS<sub>DGT</sub> or predicting dissolved concentrations from DGT results. Based on available dataset, a first simulation of “chemical status” assessment per MONITOOL sampling site using DGT measured labile concentrations was carried out and the results were compared to an assessment based on dissolved concentration to check their compliance. These results demonstrate that the use of DGT passive samplers is appropriate for the metal concentrations level encountered in the marine environment. Further work is recommended to test the effectiveness of the methodology proposed in this study under WFD conditions on more sites and to establish common strategy guidelines for the use of DGT passive samplers in monitoring.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00733-4","citationCount":"0","resultStr":"{\"title\":\"A new approach to using Diffusive Gradient in Thin-films (DGT) labile concentration for Water Framework Directive chemical status assessment: adaptation of Environmental Quality Standard to DGT for cadmium, nickel and lead\",\"authors\":\"Amouroux Isabelle, Jean-Louis Gonzalez, Stephane Guesdon, María Jesús Belzunce-Segarra, Philippe Bersuder, Thi Bolam, Miguel Caetano, Margarida Correia Dos Santos, Joana Larreta, Luc Lebrun, Barbara Marras, Vanessa Millán Gabet, Brendan McHugh, Iratxe Menchaca, Florence Menet-Nédélec, Natalia Montero, Olivier Perceval, Olivier Pierre-Duplessix, Fiona Regan, Jose Germán Rodríguez, Marta Rodrigo Sanz, Marco Schintu, Blánaid White, Hao Zhang\",\"doi\":\"10.1186/s12302-023-00733-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrative passive samplers, such as DGT (Diffusive Gradients in Thin-films), are identified in European Technical Guidance Documents as promising tools to improve the quality of the assessment, in the context of the WFD (EU Water Framework Directive). However, DGT results cannot yet be used directly in a regulatory framework to assess the chemical status of water bodies, as DGT labile concentrations cannot be directly compared to the metal AA-EQS<sub>marine water</sub> (Annual Average Environmental Quality Standard) established by the WFD, which are defined in the dissolved concentration. Therefore, prior to using DGT results in a regulatory context, for cadmium, nickel and lead, an adaptation of existing AA-EQS<sub>marine water</sub> for DGTs should be pursued, ensuring at least the same level of protection. In this sense, in the framework of the MONITOOL project, a robust database of dissolved and labile metal concentrations in transitional and coastal waters, for adapting the existing AA-EQS<sub>marine water</sub> for DGT technique, was obtained. Building on these results, this study proposes a methodology and provides values and equations for using DGT results for the chemical status assessment of marine waters, by adapting the EQS<sub>marine water</sub> to adapted EQS<sub>DGT</sub> or predicting dissolved concentrations from DGT results. Based on available dataset, a first simulation of “chemical status” assessment per MONITOOL sampling site using DGT measured labile concentrations was carried out and the results were compared to an assessment based on dissolved concentration to check their compliance. These results demonstrate that the use of DGT passive samplers is appropriate for the metal concentrations level encountered in the marine environment. Further work is recommended to test the effectiveness of the methodology proposed in this study under WFD conditions on more sites and to establish common strategy guidelines for the use of DGT passive samplers in monitoring.</p></div>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00733-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-023-00733-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00733-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A new approach to using Diffusive Gradient in Thin-films (DGT) labile concentration for Water Framework Directive chemical status assessment: adaptation of Environmental Quality Standard to DGT for cadmium, nickel and lead
Integrative passive samplers, such as DGT (Diffusive Gradients in Thin-films), are identified in European Technical Guidance Documents as promising tools to improve the quality of the assessment, in the context of the WFD (EU Water Framework Directive). However, DGT results cannot yet be used directly in a regulatory framework to assess the chemical status of water bodies, as DGT labile concentrations cannot be directly compared to the metal AA-EQSmarine water (Annual Average Environmental Quality Standard) established by the WFD, which are defined in the dissolved concentration. Therefore, prior to using DGT results in a regulatory context, for cadmium, nickel and lead, an adaptation of existing AA-EQSmarine water for DGTs should be pursued, ensuring at least the same level of protection. In this sense, in the framework of the MONITOOL project, a robust database of dissolved and labile metal concentrations in transitional and coastal waters, for adapting the existing AA-EQSmarine water for DGT technique, was obtained. Building on these results, this study proposes a methodology and provides values and equations for using DGT results for the chemical status assessment of marine waters, by adapting the EQSmarine water to adapted EQSDGT or predicting dissolved concentrations from DGT results. Based on available dataset, a first simulation of “chemical status” assessment per MONITOOL sampling site using DGT measured labile concentrations was carried out and the results were compared to an assessment based on dissolved concentration to check their compliance. These results demonstrate that the use of DGT passive samplers is appropriate for the metal concentrations level encountered in the marine environment. Further work is recommended to test the effectiveness of the methodology proposed in this study under WFD conditions on more sites and to establish common strategy guidelines for the use of DGT passive samplers in monitoring.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.