下载PDF
{"title":"耦合Klein-Gordon-Schrödinger方程的保守紧致差分格式","authors":"Qihang Sun, Lu-ming Zhang, Shanshan Wang, Xiuling Hu","doi":"10.1002/num.21770","DOIUrl":null,"url":null,"abstract":"In this article, a conservative compact difference scheme is presented for the periodic initial‐value problem of Klein–Gordon–Schrödinger equation. On the basis of some inequalities about norms and the priori estimates, convergence of the difference solution is proved with order O(h4 +τ 2) in maximum norm. Numerical experiments demonstrate the accuracy and efficiency of the compact scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"69 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/num.21770","citationCount":"9","resultStr":"{\"title\":\"A conservative compact difference scheme for the coupled Klein–Gordon–Schrödinger equation\",\"authors\":\"Qihang Sun, Lu-ming Zhang, Shanshan Wang, Xiuling Hu\",\"doi\":\"10.1002/num.21770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a conservative compact difference scheme is presented for the periodic initial‐value problem of Klein–Gordon–Schrödinger equation. On the basis of some inequalities about norms and the priori estimates, convergence of the difference solution is proved with order O(h4 +τ 2) in maximum norm. Numerical experiments demonstrate the accuracy and efficiency of the compact scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"69 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/num.21770\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.21770\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.21770","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9
引用
批量引用