{"title":"燃烧室流场有限体积和连续伽辽金法的数值耗散率分析","authors":"Vishal Saini, Hao Xia, Gary Page","doi":"10.1007/s10494-023-00428-z","DOIUrl":null,"url":null,"abstract":"<div><p>A growing body of literature indicates that element-based high-order methods can exhibit considerable accuracy/cost benefit over conventional second-order finite-volume (FV) methods for large-eddy simulations (LES). This may even hold true for complex configurations relevant to industry that involve under-resolving unstructured grids. However, it is not often clear whether the accuracy/cost benefit stems from the low-dissipative nature of the high-order numerical schemes or from using a different LES approach (implicit/explicit), or a combination of the two. The present paper employs a numerical dissipation rate analysis technique due to Schranner et al. (Comput Fluids 114:84–97, 2015) to better understand the reasons for the high-order benefit seen previously on a complex LES test case related to gas-turbine combustors. It is established that a high(fifth)-order LES run provides better accuracy than its second-order FV counterpart at the same computational cost primarily because of lower numerical dissipation and the LES model dissipation has a secondary role to play. The numerical dissipation is found to contribute 60–90% of the total (numerical and LES model) dissipation.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"111 1","pages":"81 - 113"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00428-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical Dissipation Rate Analysis of Finite-Volume and Continuous-Galerkin Methods for LES of Combustor Flow-Field\",\"authors\":\"Vishal Saini, Hao Xia, Gary Page\",\"doi\":\"10.1007/s10494-023-00428-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A growing body of literature indicates that element-based high-order methods can exhibit considerable accuracy/cost benefit over conventional second-order finite-volume (FV) methods for large-eddy simulations (LES). This may even hold true for complex configurations relevant to industry that involve under-resolving unstructured grids. However, it is not often clear whether the accuracy/cost benefit stems from the low-dissipative nature of the high-order numerical schemes or from using a different LES approach (implicit/explicit), or a combination of the two. The present paper employs a numerical dissipation rate analysis technique due to Schranner et al. (Comput Fluids 114:84–97, 2015) to better understand the reasons for the high-order benefit seen previously on a complex LES test case related to gas-turbine combustors. It is established that a high(fifth)-order LES run provides better accuracy than its second-order FV counterpart at the same computational cost primarily because of lower numerical dissipation and the LES model dissipation has a secondary role to play. The numerical dissipation is found to contribute 60–90% of the total (numerical and LES model) dissipation.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"111 1\",\"pages\":\"81 - 113\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-023-00428-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-023-00428-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00428-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical Dissipation Rate Analysis of Finite-Volume and Continuous-Galerkin Methods for LES of Combustor Flow-Field
A growing body of literature indicates that element-based high-order methods can exhibit considerable accuracy/cost benefit over conventional second-order finite-volume (FV) methods for large-eddy simulations (LES). This may even hold true for complex configurations relevant to industry that involve under-resolving unstructured grids. However, it is not often clear whether the accuracy/cost benefit stems from the low-dissipative nature of the high-order numerical schemes or from using a different LES approach (implicit/explicit), or a combination of the two. The present paper employs a numerical dissipation rate analysis technique due to Schranner et al. (Comput Fluids 114:84–97, 2015) to better understand the reasons for the high-order benefit seen previously on a complex LES test case related to gas-turbine combustors. It is established that a high(fifth)-order LES run provides better accuracy than its second-order FV counterpart at the same computational cost primarily because of lower numerical dissipation and the LES model dissipation has a secondary role to play. The numerical dissipation is found to contribute 60–90% of the total (numerical and LES model) dissipation.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.