利用EMS进行种子和无性繁殖植物的化学诱变

Q1 Agricultural and Biological Sciences
Joanna Jankowicz-Cieslak, Bradley J. Till
{"title":"利用EMS进行种子和无性繁殖植物的化学诱变","authors":"Joanna Jankowicz-Cieslak,&nbsp;Bradley J. Till","doi":"10.1002/cppb.20040","DOIUrl":null,"url":null,"abstract":"<p>Chemical mutagenesis provides an inexpensive and straightforward way to generate a high density of novel nucleotide diversity in the genomes of plants and animals. Mutagenesis therefore can be used for functional genomic studies and also for plant breeding. The most commonly used chemical mutagen in plants is ethyl methanesulfonate (EMS). EMS has been shown to induce primarily single base point mutations. Hundreds to thousands of heritable mutations can be induced in a single plant line. A relatively small number of plants, therefore, are needed to produce populations harboring deleterious alleles in most genes. EMS mutagenized plant populations can be screened phenotypically (forward-genetics), or mutations in genes can be identified in advance of phenotypic characterization (reverse-genetics). Reverse-genetics using chemically induced mutations is known as Targeting Induced Local Lesions IN Genomes (TILLING). This unit gives information on EMS treatment of seed and vegetative propagules. © 2016 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20040","citationCount":"25","resultStr":"{\"title\":\"Chemical Mutagenesis of Seed and Vegetatively Propagated Plants Using EMS\",\"authors\":\"Joanna Jankowicz-Cieslak,&nbsp;Bradley J. Till\",\"doi\":\"10.1002/cppb.20040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemical mutagenesis provides an inexpensive and straightforward way to generate a high density of novel nucleotide diversity in the genomes of plants and animals. Mutagenesis therefore can be used for functional genomic studies and also for plant breeding. The most commonly used chemical mutagen in plants is ethyl methanesulfonate (EMS). EMS has been shown to induce primarily single base point mutations. Hundreds to thousands of heritable mutations can be induced in a single plant line. A relatively small number of plants, therefore, are needed to produce populations harboring deleterious alleles in most genes. EMS mutagenized plant populations can be screened phenotypically (forward-genetics), or mutations in genes can be identified in advance of phenotypic characterization (reverse-genetics). Reverse-genetics using chemically induced mutations is known as Targeting Induced Local Lesions IN Genomes (TILLING). This unit gives information on EMS treatment of seed and vegetative propagules. © 2016 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10932,\"journal\":{\"name\":\"Current protocols in plant biology\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cppb.20040\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in plant biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 25

摘要

化学诱变为在植物和动物基因组中产生高密度的新核苷酸多样性提供了一种廉价而直接的方法。因此,诱变可以用于功能基因组研究和植物育种。植物中最常用的化学诱变剂是甲基磺酸乙酯(EMS)。EMS已被证明主要诱导单碱基突变。在单一的植物品系中可以诱发成百上千的可遗传突变。因此,需要相对较少数量的植物来产生在大多数基因中含有有害等位基因的种群。EMS诱变的植物群体可以进行表型筛选(正向遗传学),或者可以在表型表征之前识别基因突变(反向遗传学)。利用化学诱导突变的反向遗传学被称为靶向诱导局部病变基因组(TILLING)。本单元提供有关种子和无性繁殖体的EMS处理的信息。©2016 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Mutagenesis of Seed and Vegetatively Propagated Plants Using EMS

Chemical mutagenesis provides an inexpensive and straightforward way to generate a high density of novel nucleotide diversity in the genomes of plants and animals. Mutagenesis therefore can be used for functional genomic studies and also for plant breeding. The most commonly used chemical mutagen in plants is ethyl methanesulfonate (EMS). EMS has been shown to induce primarily single base point mutations. Hundreds to thousands of heritable mutations can be induced in a single plant line. A relatively small number of plants, therefore, are needed to produce populations harboring deleterious alleles in most genes. EMS mutagenized plant populations can be screened phenotypically (forward-genetics), or mutations in genes can be identified in advance of phenotypic characterization (reverse-genetics). Reverse-genetics using chemically induced mutations is known as Targeting Induced Local Lesions IN Genomes (TILLING). This unit gives information on EMS treatment of seed and vegetative propagules. © 2016 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in plant biology
Current protocols in plant biology Agricultural and Biological Sciences-Plant Science
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. Current Protocols in Plant Biology provides reproducible step-by-step instructions for protocols relevant to plant research. Furthermore, Current Protocols content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols in Plant Biology to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Plant Biology is the comprehensive source for protocols in the multidisciplinary field of plant biology, providing an extensive range of protocols from basic to cutting edge. Coverage includes: Extraction and analysis of DNA, RNA, proteins Chromosome analysis Transcriptional analysis Protein expression Metabolites Plant enzymology Epigenetics Plant genetic transformation Mutagenesis Arabidopsis, Maize, Poplar, Rice, and Soybean, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信