D. V. Kuzmin, I. R. Nizametdinov, S. Z. Smirnov, T. Yu. Timina, A. Ya. Shevko, M. P. Gora, A. V. Rybin
{"title":"梅杰日亚火山口镁质玄武岩:优势岩浆及其来源——以千岛群岛伊图鲁普岛Menshiy Brat火山为例","authors":"D. V. Kuzmin, I. R. Nizametdinov, S. Z. Smirnov, T. Yu. Timina, A. Ya. Shevko, M. P. Gora, A. V. Rybin","doi":"10.1134/S0869591123030062","DOIUrl":null,"url":null,"abstract":"<p>The paper presents new data on the formation conditions of basalts from Menshiy Brat postcaldera volcano in the Medvezhia caldera, Iturup Island. The liquidus mineral assemblage consists of olivine (<i>Fo</i> 85.3–90.1 mol %) and chromium spinel (Cr# = 0.46–0.6), which crystallized at 1090–1170°C and oxygen fugacity at NNO + 0.6 (σ = 0.2) to NNO + 0.2 (σ = 0.14) in the course of the eruption. Data on melt inclusions in the liquidus olivine demonstrate that its parental melts were low-Al<sub>2</sub>O<sub>3</sub> and low-K<sub>2</sub>O, with up to 15.5 wt % MgO, and with an average H<sub>2</sub>O content of 5.5 wt %. The newly obtained data on volatile contents in the olivine-hosted melt inclusions suggest that the mafic melts were derived by the partial melting of a peridotitic-rich source with a small admixture of an olivine-free component at 1225°C, under active influence of the slab-derived fluids. These fluids were separated from the subducting slab at 670–705°C and depths of 95–105 km beneath Iturup Island. Our results enhance our understanding of the evolution of basic magmas that serve as a heat and volatile sources during the formation of large calderas.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 3","pages":"279 - 303"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesian Basalts of the Medvezhia Caldera: Dominant Magmas and Their Sources, as Exemplified by Menshiy Brat Volcano, Iturup Island, Kuriles\",\"authors\":\"D. V. Kuzmin, I. R. Nizametdinov, S. Z. Smirnov, T. Yu. Timina, A. Ya. Shevko, M. P. Gora, A. V. Rybin\",\"doi\":\"10.1134/S0869591123030062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents new data on the formation conditions of basalts from Menshiy Brat postcaldera volcano in the Medvezhia caldera, Iturup Island. The liquidus mineral assemblage consists of olivine (<i>Fo</i> 85.3–90.1 mol %) and chromium spinel (Cr# = 0.46–0.6), which crystallized at 1090–1170°C and oxygen fugacity at NNO + 0.6 (σ = 0.2) to NNO + 0.2 (σ = 0.14) in the course of the eruption. Data on melt inclusions in the liquidus olivine demonstrate that its parental melts were low-Al<sub>2</sub>O<sub>3</sub> and low-K<sub>2</sub>O, with up to 15.5 wt % MgO, and with an average H<sub>2</sub>O content of 5.5 wt %. The newly obtained data on volatile contents in the olivine-hosted melt inclusions suggest that the mafic melts were derived by the partial melting of a peridotitic-rich source with a small admixture of an olivine-free component at 1225°C, under active influence of the slab-derived fluids. These fluids were separated from the subducting slab at 670–705°C and depths of 95–105 km beneath Iturup Island. Our results enhance our understanding of the evolution of basic magmas that serve as a heat and volatile sources during the formation of large calderas.</p>\",\"PeriodicalId\":20026,\"journal\":{\"name\":\"Petrology\",\"volume\":\"31 3\",\"pages\":\"279 - 303\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869591123030062\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591123030062","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Magnesian Basalts of the Medvezhia Caldera: Dominant Magmas and Their Sources, as Exemplified by Menshiy Brat Volcano, Iturup Island, Kuriles
The paper presents new data on the formation conditions of basalts from Menshiy Brat postcaldera volcano in the Medvezhia caldera, Iturup Island. The liquidus mineral assemblage consists of olivine (Fo 85.3–90.1 mol %) and chromium spinel (Cr# = 0.46–0.6), which crystallized at 1090–1170°C and oxygen fugacity at NNO + 0.6 (σ = 0.2) to NNO + 0.2 (σ = 0.14) in the course of the eruption. Data on melt inclusions in the liquidus olivine demonstrate that its parental melts were low-Al2O3 and low-K2O, with up to 15.5 wt % MgO, and with an average H2O content of 5.5 wt %. The newly obtained data on volatile contents in the olivine-hosted melt inclusions suggest that the mafic melts were derived by the partial melting of a peridotitic-rich source with a small admixture of an olivine-free component at 1225°C, under active influence of the slab-derived fluids. These fluids were separated from the subducting slab at 670–705°C and depths of 95–105 km beneath Iturup Island. Our results enhance our understanding of the evolution of basic magmas that serve as a heat and volatile sources during the formation of large calderas.
期刊介绍:
Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.