用于高效染料敏化太阳能电池的双层TiO2空腔/纳米颗粒光电极

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen Li, Libo Yu
{"title":"用于高效染料敏化太阳能电池的双层TiO2空腔/纳米颗粒光电极","authors":"Zhen Li,&nbsp;Libo Yu","doi":"10.1007/s11706-023-0638-8","DOIUrl":null,"url":null,"abstract":"<div><p>TiO<sub>2</sub> nanoparticles (NPs) in the size of ∼25 nm, namely P25, are very common material as the electron collecting layer in dye-sensitized solar cells (DSSCs). However, the light-scattering improvement of TiO<sub>2</sub> NP photoelectrodes is still a challenge. Here, we built TiO<sub>2</sub> cavities on the top of the TiO<sub>2</sub> NP layer by using carbonaceous microspheres as the template, forming the TiO<sub>2</sub> cavity/nanoparticle (C/NP) photoelectrode for the application in DSSCs. The cavity amount in the TiO<sub>2</sub> C/NP photoelectrode was controlled by adjusting the weight ratio of carbonaceous microspheres. SEM results confirm the successful formation of the double-layered TiO<sub>2</sub> C/NP electrode. <i>J—V</i> tests show that the optimized TiO<sub>2</sub> C/NP electrode prepared with 25 wt.% carbonaceous microspheres contributes to remarkable improvement of the short-circuit current density (<i>J</i><sub>sc</sub>) and the power conversion efficiency (PCE). The best photovoltaic performance solar cell with the PCE of 9.08% is achieved with the optimized TiO<sub>2</sub> C/NP photoelectrode, which is over 98% higher than that of the TiO<sub>2</sub> NP photoelectrode. Further investigations of UV-vis DRS, IPCE, OCVD, and EIS demonstrate that the competition between light scattering effect and charges recombination in this TiO<sub>2</sub> C/NP photoelectrode is responsible for the PCE enhancement.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells\",\"authors\":\"Zhen Li,&nbsp;Libo Yu\",\"doi\":\"10.1007/s11706-023-0638-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>TiO<sub>2</sub> nanoparticles (NPs) in the size of ∼25 nm, namely P25, are very common material as the electron collecting layer in dye-sensitized solar cells (DSSCs). However, the light-scattering improvement of TiO<sub>2</sub> NP photoelectrodes is still a challenge. Here, we built TiO<sub>2</sub> cavities on the top of the TiO<sub>2</sub> NP layer by using carbonaceous microspheres as the template, forming the TiO<sub>2</sub> cavity/nanoparticle (C/NP) photoelectrode for the application in DSSCs. The cavity amount in the TiO<sub>2</sub> C/NP photoelectrode was controlled by adjusting the weight ratio of carbonaceous microspheres. SEM results confirm the successful formation of the double-layered TiO<sub>2</sub> C/NP electrode. <i>J—V</i> tests show that the optimized TiO<sub>2</sub> C/NP electrode prepared with 25 wt.% carbonaceous microspheres contributes to remarkable improvement of the short-circuit current density (<i>J</i><sub>sc</sub>) and the power conversion efficiency (PCE). The best photovoltaic performance solar cell with the PCE of 9.08% is achieved with the optimized TiO<sub>2</sub> C/NP photoelectrode, which is over 98% higher than that of the TiO<sub>2</sub> NP photoelectrode. Further investigations of UV-vis DRS, IPCE, OCVD, and EIS demonstrate that the competition between light scattering effect and charges recombination in this TiO<sub>2</sub> C/NP photoelectrode is responsible for the PCE enhancement.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0638-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0638-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在染料敏化太阳能电池(DSSCs)中,尺寸为~ 25 nm (P25)的TiO2纳米颗粒(NPs)是非常常见的电子收集层材料。然而,TiO2 NP光电极的光散射改善仍然是一个挑战。本文以碳质微球为模板,在TiO2 NP层顶部构建TiO2空腔,形成用于DSSCs的TiO2空腔/纳米颗粒(C/NP)光电极。通过调节碳质微球的重量比来控制TiO2 C/NP光电极中的空腔量。SEM结果证实了双层TiO2 C/NP电极的成功形成。J-V测试结果表明,采用25 wt.%碳质微球制备的优化后的TiO2 C/NP电极,其短路电流密度(Jsc)和功率转换效率(PCE)均有显著提高。优化后的TiO2 C/NP光电极的PCE为9.08%,比TiO2 NP光电极的PCE提高98%以上,光伏性能最佳。进一步的UV-vis DRS、IPCE、OCVD和EIS研究表明,TiO2 C/NP光电极的光散射效应和电荷重组之间的竞争是PCE增强的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells

TiO2 nanoparticles (NPs) in the size of ∼25 nm, namely P25, are very common material as the electron collecting layer in dye-sensitized solar cells (DSSCs). However, the light-scattering improvement of TiO2 NP photoelectrodes is still a challenge. Here, we built TiO2 cavities on the top of the TiO2 NP layer by using carbonaceous microspheres as the template, forming the TiO2 cavity/nanoparticle (C/NP) photoelectrode for the application in DSSCs. The cavity amount in the TiO2 C/NP photoelectrode was controlled by adjusting the weight ratio of carbonaceous microspheres. SEM results confirm the successful formation of the double-layered TiO2 C/NP electrode. J—V tests show that the optimized TiO2 C/NP electrode prepared with 25 wt.% carbonaceous microspheres contributes to remarkable improvement of the short-circuit current density (Jsc) and the power conversion efficiency (PCE). The best photovoltaic performance solar cell with the PCE of 9.08% is achieved with the optimized TiO2 C/NP photoelectrode, which is over 98% higher than that of the TiO2 NP photoelectrode. Further investigations of UV-vis DRS, IPCE, OCVD, and EIS demonstrate that the competition between light scattering effect and charges recombination in this TiO2 C/NP photoelectrode is responsible for the PCE enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信