{"title":"冲击载荷条件下粘接接头I型断裂能试验研究","authors":"Yuki Yamagata, Xi Lu, Yu Sekiguchi, Chiaki Sato","doi":"10.1186/s40563-017-0087-7","DOIUrl":null,"url":null,"abstract":"<p>Double cantilever beam (DCB) tests under impact loading conditions were conducted using a falling-wedge impact test machine and a high-speed camera. The change in mode I fracture energy <i>G</i>\n <sub>IC</sub> was investigated in comparison with the results obtained under the quasi-static loading condition. Two types of adhesives with significantly different mechanical properties were used for the DCB tests, and the change in rate dependency of the adhesive types was observed. Adhesively bonded joints have been widely used in various engineering products, such as automobiles, ships and airplanes. The strength of the joints is important for product safety. To evaluate the mode I fracture energy of adhesively bonded joints, DCB tests have been standardized under the quasi-static loading condition. Additionally, several tests have been proposed to evaluate the impact resistance of the joints. However, impact loading makes it difficult to evaluate the fracture energy accurately because of the dynamic effects. Therefore, specialized evaluation methods for dynamic fracture must be considered, and a load-independent analysis of the fracture energy was used to avoid load measurement problems due to the dynamic effects in this study.</p>","PeriodicalId":464,"journal":{"name":"Applied Adhesion Science","volume":"5 1","pages":""},"PeriodicalIF":1.6800,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40563-017-0087-7","citationCount":"21","resultStr":"{\"title\":\"Experimental investigation of mode I fracture energy of adhesively bonded joints under impact loading conditions\",\"authors\":\"Yuki Yamagata, Xi Lu, Yu Sekiguchi, Chiaki Sato\",\"doi\":\"10.1186/s40563-017-0087-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Double cantilever beam (DCB) tests under impact loading conditions were conducted using a falling-wedge impact test machine and a high-speed camera. The change in mode I fracture energy <i>G</i>\\n <sub>IC</sub> was investigated in comparison with the results obtained under the quasi-static loading condition. Two types of adhesives with significantly different mechanical properties were used for the DCB tests, and the change in rate dependency of the adhesive types was observed. Adhesively bonded joints have been widely used in various engineering products, such as automobiles, ships and airplanes. The strength of the joints is important for product safety. To evaluate the mode I fracture energy of adhesively bonded joints, DCB tests have been standardized under the quasi-static loading condition. Additionally, several tests have been proposed to evaluate the impact resistance of the joints. However, impact loading makes it difficult to evaluate the fracture energy accurately because of the dynamic effects. Therefore, specialized evaluation methods for dynamic fracture must be considered, and a load-independent analysis of the fracture energy was used to avoid load measurement problems due to the dynamic effects in this study.</p>\",\"PeriodicalId\":464,\"journal\":{\"name\":\"Applied Adhesion Science\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6800,\"publicationDate\":\"2017-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40563-017-0087-7\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Adhesion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40563-017-0087-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Adhesion Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40563-017-0087-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
Experimental investigation of mode I fracture energy of adhesively bonded joints under impact loading conditions
Double cantilever beam (DCB) tests under impact loading conditions were conducted using a falling-wedge impact test machine and a high-speed camera. The change in mode I fracture energy GIC was investigated in comparison with the results obtained under the quasi-static loading condition. Two types of adhesives with significantly different mechanical properties were used for the DCB tests, and the change in rate dependency of the adhesive types was observed. Adhesively bonded joints have been widely used in various engineering products, such as automobiles, ships and airplanes. The strength of the joints is important for product safety. To evaluate the mode I fracture energy of adhesively bonded joints, DCB tests have been standardized under the quasi-static loading condition. Additionally, several tests have been proposed to evaluate the impact resistance of the joints. However, impact loading makes it difficult to evaluate the fracture energy accurately because of the dynamic effects. Therefore, specialized evaluation methods for dynamic fracture must be considered, and a load-independent analysis of the fracture energy was used to avoid load measurement problems due to the dynamic effects in this study.
期刊介绍:
Applied Adhesion Science focuses on practical applications of adhesives, with special emphasis in fields such as oil industry, aerospace and biomedicine. Topics related to the phenomena of adhesion and the application of adhesive materials are welcome, especially in biomedical areas such as adhesive dentistry. Both theoretical and experimental works are considered for publication. Applied Adhesion Science is a peer-reviewed open access journal published under the SpringerOpen brand. The journal''s open access policy offers a fast publication workflow whilst maintaining rigorous peer review process.