动态虫洞的Jacobi度量方法

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Álvaro Duenas-Vidal, Oscar Lasso Andino
{"title":"动态虫洞的Jacobi度量方法","authors":"Álvaro Duenas-Vidal,&nbsp;Oscar Lasso Andino","doi":"10.1007/s10714-022-03060-w","DOIUrl":null,"url":null,"abstract":"<div><p>We present the Jacobi metric formalism for dynamical wormholes. We show that in isotropic dynamical spacetimes , a first integral of the geodesic equations can be found using the Jacobi metric, and without any use of geodesic equation. This enables us to reduce the geodesic motion in dynamical wormholes to a dynamics defined in a Riemannian manifold. Then, making use of the Jacobi formalism, we study the circular stable orbits in the Jacobi metric framework for the dynamical wormhole background. Finally, we also show that the Gaussian curvature of the family of Jacobi metrics is directly related, as in the static case, to the flare-out condition of the dynamical wormhole, giving a way to characterize a wormhole spacetime by the sign of the Gaussian curvature of its Jacobi metric only.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Jacobi metric approach for dynamical wormholes\",\"authors\":\"Álvaro Duenas-Vidal,&nbsp;Oscar Lasso Andino\",\"doi\":\"10.1007/s10714-022-03060-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present the Jacobi metric formalism for dynamical wormholes. We show that in isotropic dynamical spacetimes , a first integral of the geodesic equations can be found using the Jacobi metric, and without any use of geodesic equation. This enables us to reduce the geodesic motion in dynamical wormholes to a dynamics defined in a Riemannian manifold. Then, making use of the Jacobi formalism, we study the circular stable orbits in the Jacobi metric framework for the dynamical wormhole background. Finally, we also show that the Gaussian curvature of the family of Jacobi metrics is directly related, as in the static case, to the flare-out condition of the dynamical wormhole, giving a way to characterize a wormhole spacetime by the sign of the Gaussian curvature of its Jacobi metric only.\\n</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-022-03060-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-022-03060-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

给出了动态虫洞的Jacobi度量形式。我们证明了在各向同性动力时空中,测地线方程的第一个积分可以在不使用测地线方程的情况下使用雅可比度规得到。这使我们能够将动态虫洞中的测地线运动简化为在黎曼流形中定义的动力学。然后,利用Jacobi形式,研究了动态虫洞背景下Jacobi度量框架下的圆形稳定轨道。最后,我们还证明了雅可比度量族的高斯曲率与动态虫洞的爆发条件直接相关,就像在静态情况下一样,给出了一种仅通过雅可比度量的高斯曲率符号来表征虫洞时空的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Jacobi metric approach for dynamical wormholes

We present the Jacobi metric formalism for dynamical wormholes. We show that in isotropic dynamical spacetimes , a first integral of the geodesic equations can be found using the Jacobi metric, and without any use of geodesic equation. This enables us to reduce the geodesic motion in dynamical wormholes to a dynamics defined in a Riemannian manifold. Then, making use of the Jacobi formalism, we study the circular stable orbits in the Jacobi metric framework for the dynamical wormhole background. Finally, we also show that the Gaussian curvature of the family of Jacobi metrics is directly related, as in the static case, to the flare-out condition of the dynamical wormhole, giving a way to characterize a wormhole spacetime by the sign of the Gaussian curvature of its Jacobi metric only.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信