直接营销中的商品退货模型

James D. Hess , Glenn E. Mayhew
{"title":"直接营销中的商品退货模型","authors":"James D. Hess ,&nbsp;Glenn E. Mayhew","doi":"10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.0.CO;2-#","DOIUrl":null,"url":null,"abstract":"<div><p>Returns are a significant problem for many direct marketers. New models to more accurately explain and predict returns, as well as models that will allow accurate scoring of customers and merchandise for return propensity, would be useful in an industry where returns can exceed 20 percent of sales. We offer a split adjusted hazard model as an alternative to simple regression of return times. We explain why the hazard model is robust and offer an example of its estimation using data of actual returns from an apparel direct marketer.</p></div>","PeriodicalId":100774,"journal":{"name":"Journal of Direct Marketing","volume":"11 2","pages":"Pages 20-35"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.0.CO;2-#","citationCount":"174","resultStr":"{\"title\":\"Modeling merchandise returns in direct marketing\",\"authors\":\"James D. Hess ,&nbsp;Glenn E. Mayhew\",\"doi\":\"10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.0.CO;2-#\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Returns are a significant problem for many direct marketers. New models to more accurately explain and predict returns, as well as models that will allow accurate scoring of customers and merchandise for return propensity, would be useful in an industry where returns can exceed 20 percent of sales. We offer a split adjusted hazard model as an alternative to simple regression of return times. We explain why the hazard model is robust and offer an example of its estimation using data of actual returns from an apparel direct marketer.</p></div>\",\"PeriodicalId\":100774,\"journal\":{\"name\":\"Journal of Direct Marketing\",\"volume\":\"11 2\",\"pages\":\"Pages 20-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.0.CO;2-#\",\"citationCount\":\"174\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Direct Marketing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094996897707370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Direct Marketing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094996897707370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 174

摘要

对许多直销人员来说,回报是一个重大问题。更准确地解释和预测退货的新模型,以及能够根据退货倾向对客户和商品进行准确评分的模型,将在一个退货率可能超过销售额20%的行业中发挥作用。我们提供了一个分裂调整的风险模型,作为简单回归回归时间的替代方案。我们解释了为什么风险模型是稳健的,并提供了一个使用服装直销人员实际回报数据进行估计的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling merchandise returns in direct marketing

Returns are a significant problem for many direct marketers. New models to more accurately explain and predict returns, as well as models that will allow accurate scoring of customers and merchandise for return propensity, would be useful in an industry where returns can exceed 20 percent of sales. We offer a split adjusted hazard model as an alternative to simple regression of return times. We explain why the hazard model is robust and offer an example of its estimation using data of actual returns from an apparel direct marketer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信