Cathy W. Y. Li, Stacy Walters, Jean-François Müller, John Orlando, Guy P. Brasseur
{"title":"茶叶被蒽醌污染:大气是一个可能的来源","authors":"Cathy W. Y. Li, Stacy Walters, Jean-François Müller, John Orlando, Guy P. Brasseur","doi":"10.1007/s13280-023-01858-9","DOIUrl":null,"url":null,"abstract":"<div><p>The detection of anthraquinone in tea leaves has raised concerns due to a potential health risk associated with this species. This led the European Union to impose a maximum residue limit (MRL) of 0.02 mg/kg for anthraquinone in dried tea leaves. As atmospheric contamination has been identified as one of the possible sources of anthraquinone residue, this study investigates the contamination resulting from the deposition of atmospheric anthraquinone using a global chemical transport model that accounts for the emission, atmospheric transport, chemical transformation, and deposition of anthraquinone on the surface. The largest contribution to the global atmospheric budget of anthraquinone is from residential combustion followed by the secondary formation from oxidation of anthracene. Simulations suggest that atmospheric anthraquinone deposition could be a substantial source of the anthraquinone found on tea leaves in several tea-producing regions, especially near highly industrialized and populated areas of southern and eastern Asia. The high level of anthraquinone deposition in these areas may result in residues in tea products exceeding the EU MRL. Additional contamination could also result from local tea production operations.</p></div>","PeriodicalId":461,"journal":{"name":"Ambio","volume":"52 8","pages":"1373 - 1388"},"PeriodicalIF":5.8000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13280-023-01858-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Contamination of tea leaves by anthraquinone: The atmosphere as a possible source\",\"authors\":\"Cathy W. Y. Li, Stacy Walters, Jean-François Müller, John Orlando, Guy P. Brasseur\",\"doi\":\"10.1007/s13280-023-01858-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The detection of anthraquinone in tea leaves has raised concerns due to a potential health risk associated with this species. This led the European Union to impose a maximum residue limit (MRL) of 0.02 mg/kg for anthraquinone in dried tea leaves. As atmospheric contamination has been identified as one of the possible sources of anthraquinone residue, this study investigates the contamination resulting from the deposition of atmospheric anthraquinone using a global chemical transport model that accounts for the emission, atmospheric transport, chemical transformation, and deposition of anthraquinone on the surface. The largest contribution to the global atmospheric budget of anthraquinone is from residential combustion followed by the secondary formation from oxidation of anthracene. Simulations suggest that atmospheric anthraquinone deposition could be a substantial source of the anthraquinone found on tea leaves in several tea-producing regions, especially near highly industrialized and populated areas of southern and eastern Asia. The high level of anthraquinone deposition in these areas may result in residues in tea products exceeding the EU MRL. Additional contamination could also result from local tea production operations.</p></div>\",\"PeriodicalId\":461,\"journal\":{\"name\":\"Ambio\",\"volume\":\"52 8\",\"pages\":\"1373 - 1388\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13280-023-01858-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ambio\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13280-023-01858-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ambio","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13280-023-01858-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Contamination of tea leaves by anthraquinone: The atmosphere as a possible source
The detection of anthraquinone in tea leaves has raised concerns due to a potential health risk associated with this species. This led the European Union to impose a maximum residue limit (MRL) of 0.02 mg/kg for anthraquinone in dried tea leaves. As atmospheric contamination has been identified as one of the possible sources of anthraquinone residue, this study investigates the contamination resulting from the deposition of atmospheric anthraquinone using a global chemical transport model that accounts for the emission, atmospheric transport, chemical transformation, and deposition of anthraquinone on the surface. The largest contribution to the global atmospheric budget of anthraquinone is from residential combustion followed by the secondary formation from oxidation of anthracene. Simulations suggest that atmospheric anthraquinone deposition could be a substantial source of the anthraquinone found on tea leaves in several tea-producing regions, especially near highly industrialized and populated areas of southern and eastern Asia. The high level of anthraquinone deposition in these areas may result in residues in tea products exceeding the EU MRL. Additional contamination could also result from local tea production operations.
期刊介绍:
Explores the link between anthropogenic activities and the environment, Ambio encourages multi- or interdisciplinary submissions with explicit management or policy recommendations.
Ambio addresses the scientific, social, economic, and cultural factors that influence the condition of the human environment. Ambio particularly encourages multi- or inter-disciplinary submissions with explicit management or policy recommendations.
For more than 45 years Ambio has brought international perspective to important developments in environmental research, policy and related activities for an international readership of specialists, generalists, students, decision-makers and interested laymen.