{"title":"模态双格逻辑及其扩展","authors":"S. O. Speranski","doi":"10.1007/s10469-022-09667-x","DOIUrl":null,"url":null,"abstract":"<div><div><p>We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig’s interpolation property.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"60 6","pages":"407 - 424"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Bilattice Logic and its Extensions\",\"authors\":\"S. O. Speranski\",\"doi\":\"10.1007/s10469-022-09667-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig’s interpolation property.</p></div></div>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"60 6\",\"pages\":\"407 - 424\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-022-09667-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09667-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig’s interpolation property.
期刊介绍:
This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions.
Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences.
All articles are peer-reviewed.