模态双格逻辑及其扩展

Pub Date : 2022-04-29 DOI:10.1007/s10469-022-09667-x
S. O. Speranski
{"title":"模态双格逻辑及其扩展","authors":"S. O. Speranski","doi":"10.1007/s10469-022-09667-x","DOIUrl":null,"url":null,"abstract":"<div><div><p>We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig’s interpolation property.</p></div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Bilattice Logic and its Extensions\",\"authors\":\"S. O. Speranski\",\"doi\":\"10.1007/s10469-022-09667-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig’s interpolation property.</p></div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-022-09667-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09667-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了三个逻辑的扩展格:(1)模态双格逻辑;(2) 全Belnap-Dunn双峰逻辑;(3) 经典双峰逻辑。证明了这些格是同构的。此外,构造的同构保持了各种良好的性质,如表性、先验性、可判定性或Craig插值性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Modal Bilattice Logic and its Extensions

We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig’s interpolation property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信