一类含p-Laplacian算子的混合型分数阶微分方程的存在唯一性和Ulam稳定性结果

IF 0.9 Q2 MATHEMATICS
E. Kenef, I. Merzoug, A. Guezane-Lakoud
{"title":"一类含p-Laplacian算子的混合型分数阶微分方程的存在唯一性和Ulam稳定性结果","authors":"E. Kenef,&nbsp;I. Merzoug,&nbsp;A. Guezane-Lakoud","doi":"10.1007/s40065-023-00436-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a nonlinear fractional p-Laplacian boundary value problem containing both left Riemann–Liouville and right Caputo fractional derivatives with initial and integral conditions. Some new results on the existence and uniqueness of a solution for the model are obtained as well as the Ulam stability of the solutions. Two examples are provided to show the applicability of our results.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"12 3","pages":"633 - 645"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-023-00436-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Existence, uniqueness and Ulam stability results for a mixed-type fractional differential equations with p-Laplacian operator\",\"authors\":\"E. Kenef,&nbsp;I. Merzoug,&nbsp;A. Guezane-Lakoud\",\"doi\":\"10.1007/s40065-023-00436-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a nonlinear fractional p-Laplacian boundary value problem containing both left Riemann–Liouville and right Caputo fractional derivatives with initial and integral conditions. Some new results on the existence and uniqueness of a solution for the model are obtained as well as the Ulam stability of the solutions. Two examples are provided to show the applicability of our results.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"12 3\",\"pages\":\"633 - 645\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40065-023-00436-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-023-00436-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-023-00436-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个包含左Riemann-Liouville和右Caputo分数导数的非线性分数p-Laplacian边值问题,该问题具有初始和积分条件。得到了关于模型解的存在唯一性以及解的Ulam稳定性的一些新结果。提供了两个例子来说明我们的结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, uniqueness and Ulam stability results for a mixed-type fractional differential equations with p-Laplacian operator

In this paper, we study a nonlinear fractional p-Laplacian boundary value problem containing both left Riemann–Liouville and right Caputo fractional derivatives with initial and integral conditions. Some new results on the existence and uniqueness of a solution for the model are obtained as well as the Ulam stability of the solutions. Two examples are provided to show the applicability of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信