{"title":"从估算加工能源成本的角度确定实现陶瓷金刚石磨削塑性状态的条件","authors":"V. I. Lavrinenko, V. Yu. Solod","doi":"10.3103/S1063457623010070","DOIUrl":null,"url":null,"abstract":"<p>We studied the plastic mode of processing brittle materials, the effect of the change in the working surface of the diamond wheel during processing, and ways to achieve such a mode. To assess adequately the energy intensity of processing with diamond wheels, we proposed to calculate the specific energy density of grinding, considering the volume of material spent during the processing of the wheel working layer. We derived an equation for calculating the specific energy density during the diamond grinding of ceramics. The plastic regime occurs precisely when the specific energy density of grinding becomes close to the specific heat of melting of ceramic materials.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"45 1","pages":"65 - 71"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Conditions for Achieving the Plastic Regime of Diamond Grinding of Ceramics from the Standpoint of Estimating Energy Costs of Processing\",\"authors\":\"V. I. Lavrinenko, V. Yu. Solod\",\"doi\":\"10.3103/S1063457623010070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We studied the plastic mode of processing brittle materials, the effect of the change in the working surface of the diamond wheel during processing, and ways to achieve such a mode. To assess adequately the energy intensity of processing with diamond wheels, we proposed to calculate the specific energy density of grinding, considering the volume of material spent during the processing of the wheel working layer. We derived an equation for calculating the specific energy density during the diamond grinding of ceramics. The plastic regime occurs precisely when the specific energy density of grinding becomes close to the specific heat of melting of ceramic materials.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"45 1\",\"pages\":\"65 - 71\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457623010070\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457623010070","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Determining the Conditions for Achieving the Plastic Regime of Diamond Grinding of Ceramics from the Standpoint of Estimating Energy Costs of Processing
We studied the plastic mode of processing brittle materials, the effect of the change in the working surface of the diamond wheel during processing, and ways to achieve such a mode. To assess adequately the energy intensity of processing with diamond wheels, we proposed to calculate the specific energy density of grinding, considering the volume of material spent during the processing of the wheel working layer. We derived an equation for calculating the specific energy density during the diamond grinding of ceramics. The plastic regime occurs precisely when the specific energy density of grinding becomes close to the specific heat of melting of ceramic materials.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.