\(\pmb{\mathscr{L}}\)-Artin动机的不变量

IF 0.5 Q3 MATHEMATICS
Mladen Dimitrov, Alexandre Maksoud
{"title":"\\(\\pmb{\\mathscr{L}}\\)-Artin动机的不变量","authors":"Mladen Dimitrov,&nbsp;Alexandre Maksoud","doi":"10.1007/s40316-022-00201-0","DOIUrl":null,"url":null,"abstract":"<div><h2>R\\'esum\\'e</h2><div><p>We compute Benois <span>\\({\\mathscr {L}}\\)</span>-invariants of weight 1 cuspforms and of their adjoint representations and show how this extends Gross’ <i>p</i>-adic regulator to Artin motives which are not critical in the sense of Deligne. Benois’ construction depends on the choice of a regular submodule which is well understood when the representation is <i>p</i>-regular, as it then amounts to the choice of a “motivic” <i>p</i>-refinement. The situation is dramatically different in the <i>p</i>-irregular case, where the regular submodules are parametrized by a flag variety and thus depend on continuous parameters. We are nevertheless able to show in some examples, how Hida theory and the geometry of the eigencurve can be used to detect a finite number of choices of arithmetic and “mixed-motivic” significance.</p></div></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"47 1","pages":"49 - 71"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\\(\\\\pmb {\\\\mathscr {L}}\\\\)-invariants of Artin motives\",\"authors\":\"Mladen Dimitrov,&nbsp;Alexandre Maksoud\",\"doi\":\"10.1007/s40316-022-00201-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>R\\\\'esum\\\\'e</h2><div><p>We compute Benois <span>\\\\({\\\\mathscr {L}}\\\\)</span>-invariants of weight 1 cuspforms and of their adjoint representations and show how this extends Gross’ <i>p</i>-adic regulator to Artin motives which are not critical in the sense of Deligne. Benois’ construction depends on the choice of a regular submodule which is well understood when the representation is <i>p</i>-regular, as it then amounts to the choice of a “motivic” <i>p</i>-refinement. The situation is dramatically different in the <i>p</i>-irregular case, where the regular submodules are parametrized by a flag variety and thus depend on continuous parameters. We are nevertheless able to show in some examples, how Hida theory and the geometry of the eigencurve can be used to detect a finite number of choices of arithmetic and “mixed-motivic” significance.</p></div></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"47 1\",\"pages\":\"49 - 71\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-022-00201-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-022-00201-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了权重为1的cuspforms及其伴随表示的Benois({\mathscr{L}})-不变量,并展示了这如何将Gross的p-adic调节器扩展到在Deligne意义上不关键的Artin动机。Benois的构造取决于正则子模的选择,当表示是p-正则时,正则子模是很好理解的,因为它相当于“motivic”p-精化的选择。在p-不规则情况下,情况大不相同,其中规则子模块由标志变化参数化,因此取决于连续参数。尽管如此,我们还是能够在一些例子中展示Hida理论和本征曲线的几何结构如何用于检测有限数量的算术选择和“混合动力”意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(\pmb {\mathscr {L}}\)-invariants of Artin motives

R\'esum\'e

We compute Benois \({\mathscr {L}}\)-invariants of weight 1 cuspforms and of their adjoint representations and show how this extends Gross’ p-adic regulator to Artin motives which are not critical in the sense of Deligne. Benois’ construction depends on the choice of a regular submodule which is well understood when the representation is p-regular, as it then amounts to the choice of a “motivic” p-refinement. The situation is dramatically different in the p-irregular case, where the regular submodules are parametrized by a flag variety and thus depend on continuous parameters. We are nevertheless able to show in some examples, how Hida theory and the geometry of the eigencurve can be used to detect a finite number of choices of arithmetic and “mixed-motivic” significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信