{"title":"关于偏斜Jordan矩阵乘积伪谱的保持器","authors":"M. Bendaoud, A. Benyouness, A. Cade, M. Sarih","doi":"10.1007/s44146-022-00052-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {M}_n\\)</span> be the space of \n<span>\\(n \\times n\\)</span> complex matrices, \nand for <span>\\(\\varepsilon > 0\\)</span> and \n<span>\\(A \\in \\mathcal {M}_n\\)</span>, let \n<span>\\(\\sigma _\\varepsilon (A)\\)</span> denote the \n<span>\\(\\varepsilon \\)</span>-pseudo \nspectrum of <i>A</i>. Maps \n<span>\\(\\Phi \\)</span> on \n<span>\\(\\mathcal {M}_n\\)</span> which \npreserve the skew Jordan semi-triple product of matrices in a sense that\n</p><div><div><span>$$\\sigma _\\varepsilon(\\Phi(A)\\Phi(B)*\\Phi(A))= \\sigma _\\varepsilon (AB*A)\\quad \\quad (A,B \\in \\mathcal {M}_n)$$</span></div></div><p>\nare characterized, with no surjectivity assumption on them. Analogous description is obtained for the skew Jordan product on matrices, and its variant of infinite dimension is also noted.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"88 3-4","pages":"787 - 796"},"PeriodicalIF":0.5000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On preservers of pseudo spectrum of skew Jordan matrix products\",\"authors\":\"M. Bendaoud, A. Benyouness, A. Cade, M. Sarih\",\"doi\":\"10.1007/s44146-022-00052-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {M}_n\\\\)</span> be the space of \\n<span>\\\\(n \\\\times n\\\\)</span> complex matrices, \\nand for <span>\\\\(\\\\varepsilon > 0\\\\)</span> and \\n<span>\\\\(A \\\\in \\\\mathcal {M}_n\\\\)</span>, let \\n<span>\\\\(\\\\sigma _\\\\varepsilon (A)\\\\)</span> denote the \\n<span>\\\\(\\\\varepsilon \\\\)</span>-pseudo \\nspectrum of <i>A</i>. Maps \\n<span>\\\\(\\\\Phi \\\\)</span> on \\n<span>\\\\(\\\\mathcal {M}_n\\\\)</span> which \\npreserve the skew Jordan semi-triple product of matrices in a sense that\\n</p><div><div><span>$$\\\\sigma _\\\\varepsilon(\\\\Phi(A)\\\\Phi(B)*\\\\Phi(A))= \\\\sigma _\\\\varepsilon (AB*A)\\\\quad \\\\quad (A,B \\\\in \\\\mathcal {M}_n)$$</span></div></div><p>\\nare characterized, with no surjectivity assumption on them. Analogous description is obtained for the skew Jordan product on matrices, and its variant of infinite dimension is also noted.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"88 3-4\",\"pages\":\"787 - 796\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-022-00052-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-022-00052-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On preservers of pseudo spectrum of skew Jordan matrix products
Let \(\mathcal {M}_n\) be the space of
\(n \times n\) complex matrices,
and for \(\varepsilon > 0\) and
\(A \in \mathcal {M}_n\), let
\(\sigma _\varepsilon (A)\) denote the
\(\varepsilon \)-pseudo
spectrum of A. Maps
\(\Phi \) on
\(\mathcal {M}_n\) which
preserve the skew Jordan semi-triple product of matrices in a sense that
are characterized, with no surjectivity assumption on them. Analogous description is obtained for the skew Jordan product on matrices, and its variant of infinite dimension is also noted.