{"title":"G-函数值的线性独立性,Ⅱ:收敛盘外","authors":"S. Fischler, T. Rivoal","doi":"10.1007/s40316-020-00135-5","DOIUrl":null,"url":null,"abstract":"<div><p>Given any non-polynomial <i>G</i>-function <span>\\(F(z)=\\sum _{k=0}^\\infty A_kz^k\\)</span> of radius of convergence <i>R</i> and in the kernel a <i>G</i>-operator <span>\\(L_F\\)</span>, we consider the <i>G</i>-functions <span>\\(F_n^{[s]}(z)=\\sum _{k=0}^\\infty \\frac{A_k}{(k+n)^s}z^k\\)</span> for every integers <span>\\(s\\ge 0\\)</span> and <span>\\(n\\ge 1\\)</span>. These functions can be analytically continued to a domain <span>\\({\\mathcal {D}}_F\\)</span> star-shaped at 0 and containing the disk <span>\\(\\{\\vert z\\vert <R\\}\\)</span>. Fix any <span>\\(\\alpha \\in {\\mathcal {D}}_F \\cap \\overline{{\\mathbb {Q}}}^*\\)</span>, not a singularity of <span>\\(L_F\\)</span>, and any number field <span>\\({\\mathbb {K}}\\)</span> containing <span>\\(\\alpha \\)</span> and the <span>\\(A_k\\)</span>’s. Let <span>\\(\\Phi _{\\alpha , S}\\)</span> be the <span>\\({\\mathbb {K}}\\)</span>-vector space spanned by the values <span>\\(F_n^{[s]}(\\alpha )\\)</span>, <span>\\(n\\ge 1\\)</span> and <span>\\(0\\le s\\le S\\)</span>. We prove that <span>\\(u_{{\\mathbb {K}},F}\\log (S)\\le \\dim _{\\mathbb {K}}(\\Phi _{\\alpha , S })\\le v_FS\\)</span> for any <i>S</i>, for some constants <span>\\(u_{{\\mathbb {K}},F}>0\\)</span> and <span>\\(v_F>0\\)</span>. This appears to be the first general Diophantine result for values of <i>G</i>-functions evaluated outside their disk of convergence. This theorem encompasses a previous result of the authors in [<i>Linear independence of values of G-functions</i>, J. Europ. Math. Soc. <b>22</b>(5), 1531–1576 \n(2020)], where <span>\\(\\alpha \\in \\overline{{\\mathbb {Q}}}^*\\)</span> was assumed to be such that <span>\\(\\vert \\alpha \\vert <R\\)</span>. Its proof relies on an explicit construction of a Padé approximation problem adapted to certain non-holomorphic functions associated to <i>F</i>, and it is quite different of that in the above mentioned paper. It makes use of results of André, Chudnovsky and Katz on <i>G</i>-operators, of a linear independence criterion à la Siegel over number fields, and of a far reaching generalization of Shidlovsky’s lemma built upon the approach of Bertrand–Beukers and Bertrand.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"53 - 93"},"PeriodicalIF":0.5000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00135-5","citationCount":"1","resultStr":"{\"title\":\"Linear independence of values of G-functions, II: outside the disk of convergence\",\"authors\":\"S. Fischler, T. Rivoal\",\"doi\":\"10.1007/s40316-020-00135-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given any non-polynomial <i>G</i>-function <span>\\\\(F(z)=\\\\sum _{k=0}^\\\\infty A_kz^k\\\\)</span> of radius of convergence <i>R</i> and in the kernel a <i>G</i>-operator <span>\\\\(L_F\\\\)</span>, we consider the <i>G</i>-functions <span>\\\\(F_n^{[s]}(z)=\\\\sum _{k=0}^\\\\infty \\\\frac{A_k}{(k+n)^s}z^k\\\\)</span> for every integers <span>\\\\(s\\\\ge 0\\\\)</span> and <span>\\\\(n\\\\ge 1\\\\)</span>. These functions can be analytically continued to a domain <span>\\\\({\\\\mathcal {D}}_F\\\\)</span> star-shaped at 0 and containing the disk <span>\\\\(\\\\{\\\\vert z\\\\vert <R\\\\}\\\\)</span>. Fix any <span>\\\\(\\\\alpha \\\\in {\\\\mathcal {D}}_F \\\\cap \\\\overline{{\\\\mathbb {Q}}}^*\\\\)</span>, not a singularity of <span>\\\\(L_F\\\\)</span>, and any number field <span>\\\\({\\\\mathbb {K}}\\\\)</span> containing <span>\\\\(\\\\alpha \\\\)</span> and the <span>\\\\(A_k\\\\)</span>’s. Let <span>\\\\(\\\\Phi _{\\\\alpha , S}\\\\)</span> be the <span>\\\\({\\\\mathbb {K}}\\\\)</span>-vector space spanned by the values <span>\\\\(F_n^{[s]}(\\\\alpha )\\\\)</span>, <span>\\\\(n\\\\ge 1\\\\)</span> and <span>\\\\(0\\\\le s\\\\le S\\\\)</span>. We prove that <span>\\\\(u_{{\\\\mathbb {K}},F}\\\\log (S)\\\\le \\\\dim _{\\\\mathbb {K}}(\\\\Phi _{\\\\alpha , S })\\\\le v_FS\\\\)</span> for any <i>S</i>, for some constants <span>\\\\(u_{{\\\\mathbb {K}},F}>0\\\\)</span> and <span>\\\\(v_F>0\\\\)</span>. This appears to be the first general Diophantine result for values of <i>G</i>-functions evaluated outside their disk of convergence. This theorem encompasses a previous result of the authors in [<i>Linear independence of values of G-functions</i>, J. Europ. Math. Soc. <b>22</b>(5), 1531–1576 \\n(2020)], where <span>\\\\(\\\\alpha \\\\in \\\\overline{{\\\\mathbb {Q}}}^*\\\\)</span> was assumed to be such that <span>\\\\(\\\\vert \\\\alpha \\\\vert <R\\\\)</span>. Its proof relies on an explicit construction of a Padé approximation problem adapted to certain non-holomorphic functions associated to <i>F</i>, and it is quite different of that in the above mentioned paper. It makes use of results of André, Chudnovsky and Katz on <i>G</i>-operators, of a linear independence criterion à la Siegel over number fields, and of a far reaching generalization of Shidlovsky’s lemma built upon the approach of Bertrand–Beukers and Bertrand.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"45 1\",\"pages\":\"53 - 93\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40316-020-00135-5\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-020-00135-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00135-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Linear independence of values of G-functions, II: outside the disk of convergence
Given any non-polynomial G-function \(F(z)=\sum _{k=0}^\infty A_kz^k\) of radius of convergence R and in the kernel a G-operator \(L_F\), we consider the G-functions \(F_n^{[s]}(z)=\sum _{k=0}^\infty \frac{A_k}{(k+n)^s}z^k\) for every integers \(s\ge 0\) and \(n\ge 1\). These functions can be analytically continued to a domain \({\mathcal {D}}_F\) star-shaped at 0 and containing the disk \(\{\vert z\vert <R\}\). Fix any \(\alpha \in {\mathcal {D}}_F \cap \overline{{\mathbb {Q}}}^*\), not a singularity of \(L_F\), and any number field \({\mathbb {K}}\) containing \(\alpha \) and the \(A_k\)’s. Let \(\Phi _{\alpha , S}\) be the \({\mathbb {K}}\)-vector space spanned by the values \(F_n^{[s]}(\alpha )\), \(n\ge 1\) and \(0\le s\le S\). We prove that \(u_{{\mathbb {K}},F}\log (S)\le \dim _{\mathbb {K}}(\Phi _{\alpha , S })\le v_FS\) for any S, for some constants \(u_{{\mathbb {K}},F}>0\) and \(v_F>0\). This appears to be the first general Diophantine result for values of G-functions evaluated outside their disk of convergence. This theorem encompasses a previous result of the authors in [Linear independence of values of G-functions, J. Europ. Math. Soc. 22(5), 1531–1576
(2020)], where \(\alpha \in \overline{{\mathbb {Q}}}^*\) was assumed to be such that \(\vert \alpha \vert <R\). Its proof relies on an explicit construction of a Padé approximation problem adapted to certain non-holomorphic functions associated to F, and it is quite different of that in the above mentioned paper. It makes use of results of André, Chudnovsky and Katz on G-operators, of a linear independence criterion à la Siegel over number fields, and of a far reaching generalization of Shidlovsky’s lemma built upon the approach of Bertrand–Beukers and Bertrand.
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.