{"title":"非局部Lane-Emden系统的存在性和多重性结果","authors":"Rakesh Arora, Phuoc-Tai Nguyen","doi":"10.1007/s40306-022-00485-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we show the existence and multiplicity for the nonlocal Lane-Emden system of the form\n</p><div><div><span>$$ \\begin{array}{@{}rcl@{}} \\left\\{ \\begin{aligned} \\mathbb L u &= v^{p} + \\rho \\nu \\quad &&\\text{in } {\\varOmega}, \\\\ \\mathbb L v &= u^{q} + \\sigma \\tau \\quad &&\\text{in } {\\varOmega},\\\\ u&=v = 0 \\quad &&\\text{on } \\partial {\\varOmega} \\text{ or in } {\\varOmega}^{c} \\text{ if applicable}, \\end{aligned} \\right. \\end{array} $$</span></div></div><p> where <span>\\({\\varOmega } \\subset \\mathbb {R}^{N}\\)</span> is a <i>C</i><sup>2</sup> bounded domain, <span>\\(\\mathbb L\\)</span> is a nonlocal operator, <i>ν</i>,<i>τ</i> are Radon measures on <i>Ω</i>, <i>p</i>,<i>q</i> are positive exponents, and <i>ρ</i>,<i>σ</i> > 0 are positive parameters. Based on a fine analysis of the interaction between the Green kernel associated with <span>\\(\\mathbb L\\)</span>, the source terms <i>u</i><sup><i>q</i></sup>,<i>v</i><sup><i>p</i></sup> and the measure data, we prove the existence of a positive minimal solution. Furthermore, by analyzing the geometry of Palais-Smale sequences in finite dimensional spaces given by the Galerkin type approximations and their appropriate uniform estimates, we establish the existence of a second positive solution, under a smallness condition on the positive parameters <i>ρ</i>,<i>σ</i> and superlinear growth conditions on source terms. The contribution of the paper lies on our unifying technique that is applicable to various types of local and nonlocal operators.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"48 1","pages":"3 - 28"},"PeriodicalIF":0.3000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and Multiplicity Results for Nonlocal Lane-Emden Systems\",\"authors\":\"Rakesh Arora, Phuoc-Tai Nguyen\",\"doi\":\"10.1007/s40306-022-00485-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we show the existence and multiplicity for the nonlocal Lane-Emden system of the form\\n</p><div><div><span>$$ \\\\begin{array}{@{}rcl@{}} \\\\left\\\\{ \\\\begin{aligned} \\\\mathbb L u &= v^{p} + \\\\rho \\\\nu \\\\quad &&\\\\text{in } {\\\\varOmega}, \\\\\\\\ \\\\mathbb L v &= u^{q} + \\\\sigma \\\\tau \\\\quad &&\\\\text{in } {\\\\varOmega},\\\\\\\\ u&=v = 0 \\\\quad &&\\\\text{on } \\\\partial {\\\\varOmega} \\\\text{ or in } {\\\\varOmega}^{c} \\\\text{ if applicable}, \\\\end{aligned} \\\\right. \\\\end{array} $$</span></div></div><p> where <span>\\\\({\\\\varOmega } \\\\subset \\\\mathbb {R}^{N}\\\\)</span> is a <i>C</i><sup>2</sup> bounded domain, <span>\\\\(\\\\mathbb L\\\\)</span> is a nonlocal operator, <i>ν</i>,<i>τ</i> are Radon measures on <i>Ω</i>, <i>p</i>,<i>q</i> are positive exponents, and <i>ρ</i>,<i>σ</i> > 0 are positive parameters. Based on a fine analysis of the interaction between the Green kernel associated with <span>\\\\(\\\\mathbb L\\\\)</span>, the source terms <i>u</i><sup><i>q</i></sup>,<i>v</i><sup><i>p</i></sup> and the measure data, we prove the existence of a positive minimal solution. Furthermore, by analyzing the geometry of Palais-Smale sequences in finite dimensional spaces given by the Galerkin type approximations and their appropriate uniform estimates, we establish the existence of a second positive solution, under a smallness condition on the positive parameters <i>ρ</i>,<i>σ</i> and superlinear growth conditions on source terms. The contribution of the paper lies on our unifying technique that is applicable to various types of local and nonlocal operators.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"48 1\",\"pages\":\"3 - 28\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-022-00485-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-022-00485-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
在这项工作中,我们证明了形式为$$\bearth{array}{@{}rcl@{}}\left\{\beart{aligned}\mathbb Lu&;=的非局部Lane-Emden系统的存在性和多重性v^{p}+\rho\nu\quad&&;\text{in}{\varOmega},\\\\mathbb L v&;=u^{q}+\西格玛\τ\ quad&&;\文本{in}{\varOmega},\\u&=v=0\quad&&;\text{on}\partial{\varOmega}\text{or in}。\end{array}$$其中\({\varOmega}\subet \mathbb{R}^{N}\)是C2有界域,\(\mathbb L\)是非局部算子,Γ,τ是Ω上的Radon测度,p,q是正指数,ρ,σ>; 0是正参数。基于对与\(\mathbb L\)相关的Green核、源项uq、vp和测度数据之间的相互作用的精细分析,我们证明了正极小解的存在性。此外,通过分析有限维空间中由Galerkin型近似给出的Palais-Smale序列的几何及其适当的一致估计,我们在正参数ρ、σ的小条件和源项的超线性增长条件下,建立了第二个正解的存在性。本文的贡献在于我们的统一技术,它适用于各种类型的局部和非局部算子。
Existence and Multiplicity Results for Nonlocal Lane-Emden Systems
In this work, we show the existence and multiplicity for the nonlocal Lane-Emden system of the form
$$ \begin{array}{@{}rcl@{}} \left\{ \begin{aligned} \mathbb L u &= v^{p} + \rho \nu \quad &&\text{in } {\varOmega}, \\ \mathbb L v &= u^{q} + \sigma \tau \quad &&\text{in } {\varOmega},\\ u&=v = 0 \quad &&\text{on } \partial {\varOmega} \text{ or in } {\varOmega}^{c} \text{ if applicable}, \end{aligned} \right. \end{array} $$
where \({\varOmega } \subset \mathbb {R}^{N}\) is a C2 bounded domain, \(\mathbb L\) is a nonlocal operator, ν,τ are Radon measures on Ω, p,q are positive exponents, and ρ,σ > 0 are positive parameters. Based on a fine analysis of the interaction between the Green kernel associated with \(\mathbb L\), the source terms uq,vp and the measure data, we prove the existence of a positive minimal solution. Furthermore, by analyzing the geometry of Palais-Smale sequences in finite dimensional spaces given by the Galerkin type approximations and their appropriate uniform estimates, we establish the existence of a second positive solution, under a smallness condition on the positive parameters ρ,σ and superlinear growth conditions on source terms. The contribution of the paper lies on our unifying technique that is applicable to various types of local and nonlocal operators.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.