障碍散射中的迹奇异性及相对迹的Poisson关系

IF 0.5 Q3 MATHEMATICS
Yan-Long Fang, Alexander Strohmaier
{"title":"障碍散射中的迹奇异性及相对迹的Poisson关系","authors":"Yan-Long Fang,&nbsp;Alexander Strohmaier","doi":"10.1007/s40316-021-00188-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the case of scattering by several obstacles in <span>\\({\\mathbb {R}}^d\\)</span>, <span>\\(d \\ge 2\\)</span> for the Laplace operator <span>\\(\\Delta \\)</span> with Dirichlet boundary conditions imposed on the obstacles. In the case of two obstacles, we have the Laplace operators <span>\\(\\Delta _1\\)</span> and <span>\\(\\Delta _2\\)</span> obtained by imposing Dirichlet boundary conditions only on one of the objects. The relative operator <span>\\(g(\\Delta ) - g(\\Delta _1) - g(\\Delta _2) + g(\\Delta _0)\\)</span> was introduced in Hanisch, Waters and one of the authors in (A relative trace formula for obstacle scattering. arXiv:2002.07291, 2020) and shown to be trace-class for a large class of functions <i>g</i>, including certain functions of polynomial growth. When <i>g</i> is sufficiently regular at zero and fast decaying at infinity then, by the Birman–Krein formula, this trace can be computed from the relative spectral shift function <span>\\(\\xi _\\mathrm {rel}(\\lambda ) = -\\frac{1}{\\pi } {\\text {Im}}(\\Xi (\\lambda ))\\)</span>, where <span>\\(\\Xi (\\lambda )\\)</span> is holomorphic in the upper half-plane and fast decaying. In this paper we study the wave-trace contributions to the singularities of the Fourier transform of <span>\\(\\xi _\\mathrm {rel}\\)</span>. In particular we prove that <span>\\({\\hat{\\xi }}_\\mathrm {rel}\\)</span> is real-analytic near zero and we relate the decay of <span>\\(\\Xi (\\lambda )\\)</span> along the imaginary axis to the first wave-trace invariant of the shortest bouncing ball orbit between the obstacles. The function <span>\\(\\Xi (\\lambda )\\)</span> is important in the physics of quantum fields as it determines the Casimir interactions between the objects.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"46 1","pages":"55 - 75"},"PeriodicalIF":0.5000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40316-021-00188-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Trace singularities in obstacle scattering and the Poisson relation for the relative trace\",\"authors\":\"Yan-Long Fang,&nbsp;Alexander Strohmaier\",\"doi\":\"10.1007/s40316-021-00188-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the case of scattering by several obstacles in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span>, <span>\\\\(d \\\\ge 2\\\\)</span> for the Laplace operator <span>\\\\(\\\\Delta \\\\)</span> with Dirichlet boundary conditions imposed on the obstacles. In the case of two obstacles, we have the Laplace operators <span>\\\\(\\\\Delta _1\\\\)</span> and <span>\\\\(\\\\Delta _2\\\\)</span> obtained by imposing Dirichlet boundary conditions only on one of the objects. The relative operator <span>\\\\(g(\\\\Delta ) - g(\\\\Delta _1) - g(\\\\Delta _2) + g(\\\\Delta _0)\\\\)</span> was introduced in Hanisch, Waters and one of the authors in (A relative trace formula for obstacle scattering. arXiv:2002.07291, 2020) and shown to be trace-class for a large class of functions <i>g</i>, including certain functions of polynomial growth. When <i>g</i> is sufficiently regular at zero and fast decaying at infinity then, by the Birman–Krein formula, this trace can be computed from the relative spectral shift function <span>\\\\(\\\\xi _\\\\mathrm {rel}(\\\\lambda ) = -\\\\frac{1}{\\\\pi } {\\\\text {Im}}(\\\\Xi (\\\\lambda ))\\\\)</span>, where <span>\\\\(\\\\Xi (\\\\lambda )\\\\)</span> is holomorphic in the upper half-plane and fast decaying. In this paper we study the wave-trace contributions to the singularities of the Fourier transform of <span>\\\\(\\\\xi _\\\\mathrm {rel}\\\\)</span>. In particular we prove that <span>\\\\({\\\\hat{\\\\xi }}_\\\\mathrm {rel}\\\\)</span> is real-analytic near zero and we relate the decay of <span>\\\\(\\\\Xi (\\\\lambda )\\\\)</span> along the imaginary axis to the first wave-trace invariant of the shortest bouncing ball orbit between the obstacles. The function <span>\\\\(\\\\Xi (\\\\lambda )\\\\)</span> is important in the physics of quantum fields as it determines the Casimir interactions between the objects.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"46 1\",\"pages\":\"55 - 75\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40316-021-00188-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-021-00188-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00188-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于拉普拉斯算子(Δ),我们考虑了在障碍物上施加Dirichlet边界条件的\({\mathbb{R}}^d\),\(d\ge2\)中几个障碍物散射的情况。在两个障碍物的情况下,我们有通过仅对其中一个对象施加狄利克雷边界条件而获得的拉普拉斯算子\(\Delta _1\)和\(\Deleta _2\)。相对算子\(g(\Deta)-g(\Detal_1)-g。当g在零处足够正则并且在无穷大处快速衰减时,通过Birman–Krein公式,可以从相对光谱位移函数\(\neneneba xi _\mathrm{rel}(\lambda。本文研究了波迹对\(\neneneba xi _\mathrm{rel}\)傅里叶变换奇异性的贡献。特别地,我们证明了\(\hat{\neneneba xi}}_\mathrm{rel}\)在零附近是实分析的,并且我们将\(\nenenebb xi(\lambda)\)沿虚轴的衰减与障碍物之间最短反弹球轨道的第一波迹不变量联系起来。函数\(\neneneba Xi(\lambda)\)在量子场物理学中很重要,因为它决定了物体之间的卡西米尔相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace singularities in obstacle scattering and the Poisson relation for the relative trace

We consider the case of scattering by several obstacles in \({\mathbb {R}}^d\), \(d \ge 2\) for the Laplace operator \(\Delta \) with Dirichlet boundary conditions imposed on the obstacles. In the case of two obstacles, we have the Laplace operators \(\Delta _1\) and \(\Delta _2\) obtained by imposing Dirichlet boundary conditions only on one of the objects. The relative operator \(g(\Delta ) - g(\Delta _1) - g(\Delta _2) + g(\Delta _0)\) was introduced in Hanisch, Waters and one of the authors in (A relative trace formula for obstacle scattering. arXiv:2002.07291, 2020) and shown to be trace-class for a large class of functions g, including certain functions of polynomial growth. When g is sufficiently regular at zero and fast decaying at infinity then, by the Birman–Krein formula, this trace can be computed from the relative spectral shift function \(\xi _\mathrm {rel}(\lambda ) = -\frac{1}{\pi } {\text {Im}}(\Xi (\lambda ))\), where \(\Xi (\lambda )\) is holomorphic in the upper half-plane and fast decaying. In this paper we study the wave-trace contributions to the singularities of the Fourier transform of \(\xi _\mathrm {rel}\). In particular we prove that \({\hat{\xi }}_\mathrm {rel}\) is real-analytic near zero and we relate the decay of \(\Xi (\lambda )\) along the imaginary axis to the first wave-trace invariant of the shortest bouncing ball orbit between the obstacles. The function \(\Xi (\lambda )\) is important in the physics of quantum fields as it determines the Casimir interactions between the objects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信