基于双注意力和文本嵌入网络的多信息融合用于地方引文推荐

Shanshan Wang, Xiaohong Li, Jin Yao, Ben You
{"title":"基于双注意力和文本嵌入网络的多信息融合用于地方引文推荐","authors":"Shanshan Wang,&nbsp;Xiaohong Li,&nbsp;Jin Yao,&nbsp;Ben You","doi":"10.1007/s43674-023-00063-1","DOIUrl":null,"url":null,"abstract":"<div><p>Local citation recommendation is a list of references that researchers need to cite based on a given context, so it could help researchers produce high-quality academic writing quickly and efficiently. However, existing citation recommendation methods only consider contextual content or author information, ignore the critical influence of historical citation information on citations, and learn the paper embedding at a coarse-grained level, resulting in lower-quality recommendations. To solve the above problems, we propose a novel two-stage citation recommendation model with multiple information fusion (MICR). The first stage is to enhance the target paper’s representation learning of the MICR model. To achieve the above goal, three encoders, which contain context information encoder, historical citation encoder, and author information encoder, are designed to learn rich representations of the target paper. The second stage is to select appropriate recommendation strategies for the target paper and candidate papers to achieve the goal of efficient citation recommendation. Experiments on two public citation datasets show that our model outperforms several competitive baseline methods on citation recommendation.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-information fusion based on dual attention and text embedding network for local citation recommendation\",\"authors\":\"Shanshan Wang,&nbsp;Xiaohong Li,&nbsp;Jin Yao,&nbsp;Ben You\",\"doi\":\"10.1007/s43674-023-00063-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Local citation recommendation is a list of references that researchers need to cite based on a given context, so it could help researchers produce high-quality academic writing quickly and efficiently. However, existing citation recommendation methods only consider contextual content or author information, ignore the critical influence of historical citation information on citations, and learn the paper embedding at a coarse-grained level, resulting in lower-quality recommendations. To solve the above problems, we propose a novel two-stage citation recommendation model with multiple information fusion (MICR). The first stage is to enhance the target paper’s representation learning of the MICR model. To achieve the above goal, three encoders, which contain context information encoder, historical citation encoder, and author information encoder, are designed to learn rich representations of the target paper. The second stage is to select appropriate recommendation strategies for the target paper and candidate papers to achieve the goal of efficient citation recommendation. Experiments on two public citation datasets show that our model outperforms several competitive baseline methods on citation recommendation.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-023-00063-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-023-00063-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本地引文推荐是研究人员需要根据给定的上下文引用的参考文献列表,因此它可以帮助研究人员快速高效地撰写高质量的学术文章。然而,现有的引文推荐方法只考虑上下文内容或作者信息,忽略了历史引文信息对引文的关键影响,并在粗粒度水平上学习论文嵌入,导致推荐质量较低。为了解决上述问题,我们提出了一种新的具有多信息融合的两阶段引文推荐模型(MICR)。第一阶段是增强目标论文对MICR模型的表示学习。为了实现上述目标,设计了三个编码器,包括上下文信息编码器、历史引文编码器和作者信息编码器,以学习目标论文的丰富表示。第二阶段是为目标论文和候选论文选择合适的推荐策略,以实现高效引用推荐的目标。在两个公开引文数据集上的实验表明,我们的模型在引文推荐方面优于几种竞争性的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-information fusion based on dual attention and text embedding network for local citation recommendation

Multi-information fusion based on dual attention and text embedding network for local citation recommendation

Local citation recommendation is a list of references that researchers need to cite based on a given context, so it could help researchers produce high-quality academic writing quickly and efficiently. However, existing citation recommendation methods only consider contextual content or author information, ignore the critical influence of historical citation information on citations, and learn the paper embedding at a coarse-grained level, resulting in lower-quality recommendations. To solve the above problems, we propose a novel two-stage citation recommendation model with multiple information fusion (MICR). The first stage is to enhance the target paper’s representation learning of the MICR model. To achieve the above goal, three encoders, which contain context information encoder, historical citation encoder, and author information encoder, are designed to learn rich representations of the target paper. The second stage is to select appropriate recommendation strategies for the target paper and candidate papers to achieve the goal of efficient citation recommendation. Experiments on two public citation datasets show that our model outperforms several competitive baseline methods on citation recommendation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信