加权合成算子生成的一致闭代数中的加权合成-微分算子

IF 0.5 Q3 MATHEMATICS
Gajath Gunatillake
{"title":"加权合成算子生成的一致闭代数中的加权合成-微分算子","authors":"Gajath Gunatillake","doi":"10.1007/s44146-023-00083-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\varphi \\)</span> be an analytic self map of the open unit disc <span>\\(\\mathbb {D}\\)</span>. Assume that <span>\\(\\psi \\)</span> is an analytic map of <span>\\(\\mathbb {D}\\)</span>. Suppose that <i>f</i> is in the Hardy space of the open unit disc <span>\\(H^p\\)</span>. The operator that takes <i>f</i> into <span>\\(\\psi \\cdot f \\circ \\varphi \\)</span> is a weighted composition operator, and is denoted by <span>\\(C_{\\psi ,\\varphi }\\)</span>. The operator that takes <i>f</i> into <span>\\(\\psi \\cdot f^\\prime \\circ \\varphi \\)</span> is a weighted composition-differentiation operator. We prove that some weighted composition-differentiation operators belong to the closed algebra generated by weighted composition operators in the uniform operator topology.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"53 - 60"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00083-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Weighted composition–differentiation operators in the uniformly closed algebra generated by weighted composition operators\",\"authors\":\"Gajath Gunatillake\",\"doi\":\"10.1007/s44146-023-00083-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\varphi \\\\)</span> be an analytic self map of the open unit disc <span>\\\\(\\\\mathbb {D}\\\\)</span>. Assume that <span>\\\\(\\\\psi \\\\)</span> is an analytic map of <span>\\\\(\\\\mathbb {D}\\\\)</span>. Suppose that <i>f</i> is in the Hardy space of the open unit disc <span>\\\\(H^p\\\\)</span>. The operator that takes <i>f</i> into <span>\\\\(\\\\psi \\\\cdot f \\\\circ \\\\varphi \\\\)</span> is a weighted composition operator, and is denoted by <span>\\\\(C_{\\\\psi ,\\\\varphi }\\\\)</span>. The operator that takes <i>f</i> into <span>\\\\(\\\\psi \\\\cdot f^\\\\prime \\\\circ \\\\varphi \\\\)</span> is a weighted composition-differentiation operator. We prove that some weighted composition-differentiation operators belong to the closed algebra generated by weighted composition operators in the uniform operator topology.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 1-2\",\"pages\":\"53 - 60\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00083-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00083-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00083-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(\varphi\)是开单位圆盘\(\mathbb{D}\)的解析自映射。假设\(\psi\)是\(\mathbb{D}\)的解析映射。假设f在开单位圆盘\(H^p\)的Hardy空间中。将f带入\(\psi\cdot f\cir\varphi\)的算子是一个加权复合算子,用\(C_{\psi,\varphi}\)表示。将f带入\(\psi\cdot f^\prime\circ\varphi\)的运算符是加权合成微分运算符。我们证明了一些加权复合微分算子属于一致算子拓扑中由加权复合算子生成的闭代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted composition–differentiation operators in the uniformly closed algebra generated by weighted composition operators

Let \(\varphi \) be an analytic self map of the open unit disc \(\mathbb {D}\). Assume that \(\psi \) is an analytic map of \(\mathbb {D}\). Suppose that f is in the Hardy space of the open unit disc \(H^p\). The operator that takes f into \(\psi \cdot f \circ \varphi \) is a weighted composition operator, and is denoted by \(C_{\psi ,\varphi }\). The operator that takes f into \(\psi \cdot f^\prime \circ \varphi \) is a weighted composition-differentiation operator. We prove that some weighted composition-differentiation operators belong to the closed algebra generated by weighted composition operators in the uniform operator topology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信