不动点定理:变式、仿射上下文和一些结果

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Anderson L. A. de Araujo, Edir J. F. Leite
{"title":"不动点定理:变式、仿射上下文和一些结果","authors":"Anderson L. A. de Araujo,&nbsp;Edir J. F. Leite","doi":"10.1007/s43034-023-00304-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we will present variants Fixed Point Theorem for the affine and classical contexts, as a consequence of general Brouwer’s Fixed Point Theorem. For instance, the affine results will allow working on affine balls, which are defined through the affine <span>\\(L^{p}\\)</span> functional <span>\\(\\mathcal {E}_{p,\\Omega }^p\\)</span> introduced by Lutwak et al. (J Differ Geom 62:17–38, 2002) for <span>\\(p &gt; 1\\)</span> that is non convex and does not represent a norm in <span>\\(\\mathbb {R}^m\\)</span>. Moreover, we address results for discontinuous functional at a point. As an application, we study critical points of the sequence of affine functionals <span>\\(\\Phi _m\\)</span> on a subspace <span>\\(W_m\\)</span> of dimension <i>m</i> given by </p><div><div><span>$$\\begin{aligned} \\Phi _m(u)=\\frac{1}{p}\\mathcal {E}_{p, \\Omega }^{p}(u) - \\frac{1}{\\alpha }\\Vert u\\Vert ^{\\alpha }_{L^\\alpha (\\Omega )}- \\int _{\\Omega }f(x)u \\textrm{d}x, \\end{aligned}$$</span></div></div><p>where <span>\\(1&lt;\\alpha &lt;p\\)</span>, <span>\\([W_m]_{m \\in \\mathbb {N}}\\)</span> is dense in <span>\\(W^{1,p}_0(\\Omega )\\)</span> and <span>\\(f\\in L^{p'}(\\Omega )\\)</span>, with <span>\\(\\frac{1}{p}+\\frac{1}{p'}=1\\)</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-023-00304-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Fixed Point Theorem: variants, affine context and some consequences\",\"authors\":\"Anderson L. A. de Araujo,&nbsp;Edir J. F. Leite\",\"doi\":\"10.1007/s43034-023-00304-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we will present variants Fixed Point Theorem for the affine and classical contexts, as a consequence of general Brouwer’s Fixed Point Theorem. For instance, the affine results will allow working on affine balls, which are defined through the affine <span>\\\\(L^{p}\\\\)</span> functional <span>\\\\(\\\\mathcal {E}_{p,\\\\Omega }^p\\\\)</span> introduced by Lutwak et al. (J Differ Geom 62:17–38, 2002) for <span>\\\\(p &gt; 1\\\\)</span> that is non convex and does not represent a norm in <span>\\\\(\\\\mathbb {R}^m\\\\)</span>. Moreover, we address results for discontinuous functional at a point. As an application, we study critical points of the sequence of affine functionals <span>\\\\(\\\\Phi _m\\\\)</span> on a subspace <span>\\\\(W_m\\\\)</span> of dimension <i>m</i> given by </p><div><div><span>$$\\\\begin{aligned} \\\\Phi _m(u)=\\\\frac{1}{p}\\\\mathcal {E}_{p, \\\\Omega }^{p}(u) - \\\\frac{1}{\\\\alpha }\\\\Vert u\\\\Vert ^{\\\\alpha }_{L^\\\\alpha (\\\\Omega )}- \\\\int _{\\\\Omega }f(x)u \\\\textrm{d}x, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(1&lt;\\\\alpha &lt;p\\\\)</span>, <span>\\\\([W_m]_{m \\\\in \\\\mathbb {N}}\\\\)</span> is dense in <span>\\\\(W^{1,p}_0(\\\\Omega )\\\\)</span> and <span>\\\\(f\\\\in L^{p'}(\\\\Omega )\\\\)</span>, with <span>\\\\(\\\\frac{1}{p}+\\\\frac{1}{p'}=1\\\\)</span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-023-00304-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00304-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00304-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,作为一般Brouwer不动点定理的结果,我们将提出仿射和经典背景下的变体不动点定理。例如,仿射结果将允许对仿射球进行处理,仿射球是通过仿射\(L^{p}\)泛函\(\mathcal定义的{E}_{p,\Omega}^p\),由Lutwak等人(J Differ Geom 62:17–382002)为非凸且不表示\(\mathbb{R}^m\)中的范数的\(p>;1\)引入。此外,我们讨论了一点上不连续泛函的结果。作为一个应用,我们研究了由$$\beagin{aligned}\Phi _m(u)=\frac{1}{p}\mathcal给出的维数为m的子空间\(W_m)上的仿射泛函序列\(\Phi _m\)的临界点{E}_{p,\Omega}^{p}(u)-\frac{1}{\alpha}\Vert u\Vert^{\aalpha}_{L^\alpha(\Omega)}-\int _{\Omega}f(x)u\textrm{d}x,\end{aligned}$$其中\(1<;\alpha<;p\),\([W_m]_{m\in\mathbb{N}}\)在\(W)中稠密^{1,p}_0(\Omega)\)和\(f\在L^{p'}(\Omega\)中,其中\(\frac{1}{p}+\frac{1}{p'}=1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed Point Theorem: variants, affine context and some consequences

In this work, we will present variants Fixed Point Theorem for the affine and classical contexts, as a consequence of general Brouwer’s Fixed Point Theorem. For instance, the affine results will allow working on affine balls, which are defined through the affine \(L^{p}\) functional \(\mathcal {E}_{p,\Omega }^p\) introduced by Lutwak et al. (J Differ Geom 62:17–38, 2002) for \(p > 1\) that is non convex and does not represent a norm in \(\mathbb {R}^m\). Moreover, we address results for discontinuous functional at a point. As an application, we study critical points of the sequence of affine functionals \(\Phi _m\) on a subspace \(W_m\) of dimension m given by

$$\begin{aligned} \Phi _m(u)=\frac{1}{p}\mathcal {E}_{p, \Omega }^{p}(u) - \frac{1}{\alpha }\Vert u\Vert ^{\alpha }_{L^\alpha (\Omega )}- \int _{\Omega }f(x)u \textrm{d}x, \end{aligned}$$

where \(1<\alpha <p\), \([W_m]_{m \in \mathbb {N}}\) is dense in \(W^{1,p}_0(\Omega )\) and \(f\in L^{p'}(\Omega )\), with \(\frac{1}{p}+\frac{1}{p'}=1\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信