关于由\(x^{2}^{u}.3^{v}}-m\)定义的某些纯数域的单胚性

IF 0.5 Q3 MATHEMATICS
Lhoussain El Fadil, Ahmed Najim
{"title":"关于由\\(x^{2}^{u}.3^{v}}-m\\)定义的某些纯数域的单胚性","authors":"Lhoussain El Fadil,&nbsp;Ahmed Najim","doi":"10.1007/s44146-022-00039-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(K = \\mathbb {Q} (\\alpha)\\)</span> \nbe a pure number field generated by a complex root <span>\\(\\alpha \\)</span> of a monic irreducible polynomial \n<span>\\(F(x) = x^{{2}^{u}.3^{v}} - m\\)</span>, with \n<span>\\(m \\neq \\pm 1 \\)</span> a square free rational integer, \n<i>u</i>, and <i>v</i> two positive integers. In this paper, we study the monogenity \nof <i>K</i>. The cases <span>\\(u = 0\\)</span> and \n<span>\\(v=0\\)</span> have been previously studied by the first \nauthor and Ben Yakkou. \nWe prove that if <i>m</i> ≢ 1 (mod 4) and \n<i>m</i> ≢ <span>\\(\\pm\\)</span>1 (mod 9), then <i>K</i> \nis monogenic. But if <span>\\(m \\equiv 1\\)</span> (mod 4) \nor <span>\\(m \\equiv 1 \\)</span>\n(mod 9) or <span>\\(u = 2\\)</span> and \n<span>\\(m \\equiv -1\\)</span> (mod 9), then \n<i>K</i> is not monogenic. Some illustrating examples are given too.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"88 3-4","pages":"581 - 594"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-022-00039-6.pdf","citationCount":"2","resultStr":"{\"title\":\"On monogenity of certain pure number fields defined by \\\\(x^{{2}^{u}.3^{v}} - m\\\\)\",\"authors\":\"Lhoussain El Fadil,&nbsp;Ahmed Najim\",\"doi\":\"10.1007/s44146-022-00039-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(K = \\\\mathbb {Q} (\\\\alpha)\\\\)</span> \\nbe a pure number field generated by a complex root <span>\\\\(\\\\alpha \\\\)</span> of a monic irreducible polynomial \\n<span>\\\\(F(x) = x^{{2}^{u}.3^{v}} - m\\\\)</span>, with \\n<span>\\\\(m \\\\neq \\\\pm 1 \\\\)</span> a square free rational integer, \\n<i>u</i>, and <i>v</i> two positive integers. In this paper, we study the monogenity \\nof <i>K</i>. The cases <span>\\\\(u = 0\\\\)</span> and \\n<span>\\\\(v=0\\\\)</span> have been previously studied by the first \\nauthor and Ben Yakkou. \\nWe prove that if <i>m</i> ≢ 1 (mod 4) and \\n<i>m</i> ≢ <span>\\\\(\\\\pm\\\\)</span>1 (mod 9), then <i>K</i> \\nis monogenic. But if <span>\\\\(m \\\\equiv 1\\\\)</span> (mod 4) \\nor <span>\\\\(m \\\\equiv 1 \\\\)</span>\\n(mod 9) or <span>\\\\(u = 2\\\\)</span> and \\n<span>\\\\(m \\\\equiv -1\\\\)</span> (mod 9), then \\n<i>K</i> is not monogenic. Some illustrating examples are given too.\\n</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"88 3-4\",\"pages\":\"581 - 594\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-022-00039-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-022-00039-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-022-00039-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设\(K=\mathbb{Q}(\alpha)\)是由一个单不可约多项式\(F(x)=x^{2}^{u}.3^{v}}-m\)的复数根\(\alpha\)生成的一个纯数域,其中\(m\neq\pm1\)是一个无平方有理整数,u和v是两个正整数。在本文中,我们研究了K的单基因性。第一作者和Ben Yakkou已经研究了情况\(u=0)和\(v=0)。我们证明了如果m≢1(mod 4)和m≡\(\pm\)1(mod9),那么K是单基因的。但如果\(m\equiv1\)(mod 4)或\(m\ equiv1\)(mod9)或\。并举例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On monogenity of certain pure number fields defined by \(x^{{2}^{u}.3^{v}} - m\)

Let \(K = \mathbb {Q} (\alpha)\) be a pure number field generated by a complex root \(\alpha \) of a monic irreducible polynomial \(F(x) = x^{{2}^{u}.3^{v}} - m\), with \(m \neq \pm 1 \) a square free rational integer, u, and v two positive integers. In this paper, we study the monogenity of K. The cases \(u = 0\) and \(v=0\) have been previously studied by the first author and Ben Yakkou. We prove that if m ≢ 1 (mod 4) and m\(\pm\)1 (mod 9), then K is monogenic. But if \(m \equiv 1\) (mod 4) or \(m \equiv 1 \) (mod 9) or \(u = 2\) and \(m \equiv -1\) (mod 9), then K is not monogenic. Some illustrating examples are given too.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信