{"title":"关于由\\(x^{2}^{u}.3^{v}}-m\\)定义的某些纯数域的单胚性","authors":"Lhoussain El Fadil, Ahmed Najim","doi":"10.1007/s44146-022-00039-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(K = \\mathbb {Q} (\\alpha)\\)</span> \nbe a pure number field generated by a complex root <span>\\(\\alpha \\)</span> of a monic irreducible polynomial \n<span>\\(F(x) = x^{{2}^{u}.3^{v}} - m\\)</span>, with \n<span>\\(m \\neq \\pm 1 \\)</span> a square free rational integer, \n<i>u</i>, and <i>v</i> two positive integers. In this paper, we study the monogenity \nof <i>K</i>. The cases <span>\\(u = 0\\)</span> and \n<span>\\(v=0\\)</span> have been previously studied by the first \nauthor and Ben Yakkou. \nWe prove that if <i>m</i> ≢ 1 (mod 4) and \n<i>m</i> ≢ <span>\\(\\pm\\)</span>1 (mod 9), then <i>K</i> \nis monogenic. But if <span>\\(m \\equiv 1\\)</span> (mod 4) \nor <span>\\(m \\equiv 1 \\)</span>\n(mod 9) or <span>\\(u = 2\\)</span> and \n<span>\\(m \\equiv -1\\)</span> (mod 9), then \n<i>K</i> is not monogenic. Some illustrating examples are given too.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"88 3-4","pages":"581 - 594"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-022-00039-6.pdf","citationCount":"2","resultStr":"{\"title\":\"On monogenity of certain pure number fields defined by \\\\(x^{{2}^{u}.3^{v}} - m\\\\)\",\"authors\":\"Lhoussain El Fadil, Ahmed Najim\",\"doi\":\"10.1007/s44146-022-00039-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(K = \\\\mathbb {Q} (\\\\alpha)\\\\)</span> \\nbe a pure number field generated by a complex root <span>\\\\(\\\\alpha \\\\)</span> of a monic irreducible polynomial \\n<span>\\\\(F(x) = x^{{2}^{u}.3^{v}} - m\\\\)</span>, with \\n<span>\\\\(m \\\\neq \\\\pm 1 \\\\)</span> a square free rational integer, \\n<i>u</i>, and <i>v</i> two positive integers. In this paper, we study the monogenity \\nof <i>K</i>. The cases <span>\\\\(u = 0\\\\)</span> and \\n<span>\\\\(v=0\\\\)</span> have been previously studied by the first \\nauthor and Ben Yakkou. \\nWe prove that if <i>m</i> ≢ 1 (mod 4) and \\n<i>m</i> ≢ <span>\\\\(\\\\pm\\\\)</span>1 (mod 9), then <i>K</i> \\nis monogenic. But if <span>\\\\(m \\\\equiv 1\\\\)</span> (mod 4) \\nor <span>\\\\(m \\\\equiv 1 \\\\)</span>\\n(mod 9) or <span>\\\\(u = 2\\\\)</span> and \\n<span>\\\\(m \\\\equiv -1\\\\)</span> (mod 9), then \\n<i>K</i> is not monogenic. Some illustrating examples are given too.\\n</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"88 3-4\",\"pages\":\"581 - 594\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-022-00039-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-022-00039-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-022-00039-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On monogenity of certain pure number fields defined by \(x^{{2}^{u}.3^{v}} - m\)
Let \(K = \mathbb {Q} (\alpha)\)
be a pure number field generated by a complex root \(\alpha \) of a monic irreducible polynomial
\(F(x) = x^{{2}^{u}.3^{v}} - m\), with
\(m \neq \pm 1 \) a square free rational integer,
u, and v two positive integers. In this paper, we study the monogenity
of K. The cases \(u = 0\) and
\(v=0\) have been previously studied by the first
author and Ben Yakkou.
We prove that if m ≢ 1 (mod 4) and
m ≢ \(\pm\)1 (mod 9), then K
is monogenic. But if \(m \equiv 1\) (mod 4)
or \(m \equiv 1 \)
(mod 9) or \(u = 2\) and
\(m \equiv -1\) (mod 9), then
K is not monogenic. Some illustrating examples are given too.