分数单调系数正弦级数和的渐近性

Pub Date : 2023-01-23 DOI:10.1007/s10476-023-0186-6
M. I. Dyachenko, A. P. Solodov
{"title":"分数单调系数正弦级数和的渐近性","authors":"M. I. Dyachenko,&nbsp;A. P. Solodov","doi":"10.1007/s10476-023-0186-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study the following question: which monotonicity order implies upper and lower estimates of the sum of a sine series <span>\\(g\\left( {{\\boldsymbol{b}},x} \\right) = \\sum\\nolimits_{k = 1}^\\infty {{b_k}} \\)</span> sin <i>kx</i> near zero in terms of the function <span>\\(v\\left( {{\\boldsymbol{b}},x} \\right) = x\\sum\\nolimits_{k = 1}^{\\left[ {\\pi /x} \\right]} {k{b_k}} \\)</span>. Our results complete, on a qualitative level, the studies began by R. Salem and continued by S. Izumi, S. A. Telyakovskiĭ and A. Yu. Popov.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotics of Sums of Sine Series with Fractional Monotonicity Coefficients\",\"authors\":\"M. I. Dyachenko,&nbsp;A. P. Solodov\",\"doi\":\"10.1007/s10476-023-0186-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the following question: which monotonicity order implies upper and lower estimates of the sum of a sine series <span>\\\\(g\\\\left( {{\\\\boldsymbol{b}},x} \\\\right) = \\\\sum\\\\nolimits_{k = 1}^\\\\infty {{b_k}} \\\\)</span> sin <i>kx</i> near zero in terms of the function <span>\\\\(v\\\\left( {{\\\\boldsymbol{b}},x} \\\\right) = x\\\\sum\\\\nolimits_{k = 1}^{\\\\left[ {\\\\pi /x} \\\\right]} {k{b_k}} \\\\)</span>. Our results complete, on a qualitative level, the studies began by R. Salem and continued by S. Izumi, S. A. Telyakovskiĭ and A. Yu. Popov.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0186-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0186-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了以下问题:根据函数\(v\left({\boldsymbol{b}},x}\right)=\sum\lolimits_{k=1}^\infty{b_k})=x\sum\limits_{k=1}^{\pi/x}\ right]}{k}\),哪个单调性阶意味着正弦级数的和的上下估计。我们的研究结果在定性水平上完成了由R.Salem开始并由S.Izumi、S.a.Telyakovskiĭ和a.Yu继续的研究。波波夫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotics of Sums of Sine Series with Fractional Monotonicity Coefficients

We study the following question: which monotonicity order implies upper and lower estimates of the sum of a sine series \(g\left( {{\boldsymbol{b}},x} \right) = \sum\nolimits_{k = 1}^\infty {{b_k}} \) sin kx near zero in terms of the function \(v\left( {{\boldsymbol{b}},x} \right) = x\sum\nolimits_{k = 1}^{\left[ {\pi /x} \right]} {k{b_k}} \). Our results complete, on a qualitative level, the studies began by R. Salem and continued by S. Izumi, S. A. Telyakovskiĭ and A. Yu. Popov.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信