{"title":"分数单调系数正弦级数和的渐近性","authors":"M. I. Dyachenko, A. P. Solodov","doi":"10.1007/s10476-023-0186-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study the following question: which monotonicity order implies upper and lower estimates of the sum of a sine series <span>\\(g\\left( {{\\boldsymbol{b}},x} \\right) = \\sum\\nolimits_{k = 1}^\\infty {{b_k}} \\)</span> sin <i>kx</i> near zero in terms of the function <span>\\(v\\left( {{\\boldsymbol{b}},x} \\right) = x\\sum\\nolimits_{k = 1}^{\\left[ {\\pi /x} \\right]} {k{b_k}} \\)</span>. Our results complete, on a qualitative level, the studies began by R. Salem and continued by S. Izumi, S. A. Telyakovskiĭ and A. Yu. Popov.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotics of Sums of Sine Series with Fractional Monotonicity Coefficients\",\"authors\":\"M. I. Dyachenko, A. P. Solodov\",\"doi\":\"10.1007/s10476-023-0186-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the following question: which monotonicity order implies upper and lower estimates of the sum of a sine series <span>\\\\(g\\\\left( {{\\\\boldsymbol{b}},x} \\\\right) = \\\\sum\\\\nolimits_{k = 1}^\\\\infty {{b_k}} \\\\)</span> sin <i>kx</i> near zero in terms of the function <span>\\\\(v\\\\left( {{\\\\boldsymbol{b}},x} \\\\right) = x\\\\sum\\\\nolimits_{k = 1}^{\\\\left[ {\\\\pi /x} \\\\right]} {k{b_k}} \\\\)</span>. Our results complete, on a qualitative level, the studies began by R. Salem and continued by S. Izumi, S. A. Telyakovskiĭ and A. Yu. Popov.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0186-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0186-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotics of Sums of Sine Series with Fractional Monotonicity Coefficients
We study the following question: which monotonicity order implies upper and lower estimates of the sum of a sine series \(g\left( {{\boldsymbol{b}},x} \right) = \sum\nolimits_{k = 1}^\infty {{b_k}} \) sin kx near zero in terms of the function \(v\left( {{\boldsymbol{b}},x} \right) = x\sum\nolimits_{k = 1}^{\left[ {\pi /x} \right]} {k{b_k}} \). Our results complete, on a qualitative level, the studies began by R. Salem and continued by S. Izumi, S. A. Telyakovskiĭ and A. Yu. Popov.