{"title":"言语运算方法与自由代数范畴的自同构","authors":"E. V. Aladova","doi":"10.1007/s10469-022-09679-7","DOIUrl":null,"url":null,"abstract":"<div><div><p>Let an arbitrary variety of algebras and the category of all free finitely generated algebras in that variety be given. This paper is the second in a series of papers started in [Algebra and Logic, <b>61</b>, No. 1, 1-15 (2022)] where we deal with automorphisms of the category of free finitely generated algebras. Here we describe in detail a method of verbal operations. The method provides a characterization of automorphisms of the category of all free finitely generated algebras in a given variety. The characterization plays a crucial role in universal algebraic geometry. We supply the reader with illuminating examples which clarify the method.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"61 2","pages":"87 - 103"},"PeriodicalIF":0.4000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Method of Verbal Operations and Automorphisms of the Category of Free Algebras\",\"authors\":\"E. V. Aladova\",\"doi\":\"10.1007/s10469-022-09679-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>Let an arbitrary variety of algebras and the category of all free finitely generated algebras in that variety be given. This paper is the second in a series of papers started in [Algebra and Logic, <b>61</b>, No. 1, 1-15 (2022)] where we deal with automorphisms of the category of free finitely generated algebras. Here we describe in detail a method of verbal operations. The method provides a characterization of automorphisms of the category of all free finitely generated algebras in a given variety. The characterization plays a crucial role in universal algebraic geometry. We supply the reader with illuminating examples which clarify the method.</p></div></div>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"61 2\",\"pages\":\"87 - 103\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-022-09679-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09679-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
Method of Verbal Operations and Automorphisms of the Category of Free Algebras
Let an arbitrary variety of algebras and the category of all free finitely generated algebras in that variety be given. This paper is the second in a series of papers started in [Algebra and Logic, 61, No. 1, 1-15 (2022)] where we deal with automorphisms of the category of free finitely generated algebras. Here we describe in detail a method of verbal operations. The method provides a characterization of automorphisms of the category of all free finitely generated algebras in a given variety. The characterization plays a crucial role in universal algebraic geometry. We supply the reader with illuminating examples which clarify the method.
期刊介绍:
This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions.
Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences.
All articles are peer-reviewed.