半局部环的投影

IF 0.4 3区 数学 Q4 LOGIC
S. S. Korobkov
{"title":"半局部环的投影","authors":"S. S. Korobkov","doi":"10.1007/s10469-022-09681-z","DOIUrl":null,"url":null,"abstract":"<div><div><p>Associative rings are considered. By a lattice isomorphism (or projection) of a ring <i>R</i> onto a ring <i>R</i><sup><i>φ</i></sup> we mean an isomorphism <i>φ</i> of the subring lattice L(<i>R</i>) of a ring <i>R</i> onto the subring lattice L(<i>R</i><sup><i>φ</i></sup>) of a ring <i>R</i><sup><i>φ</i></sup>. Let M<sub>n</sub>(GF(p<sup>k</sup>)) be the ring of all square matrices of order n over a finite field GF(<i>p</i><sup><i>k</i></sup>), where <i>n</i> and <i>k</i> are natural numbers, <i>p</i> is a prime. A finite ring R with identity is called a semilocal (primary) ring if R/RadR ≅ M<sub>n</sub>(GF(p<sup>k</sup>)). It is known that a finite ring R with identity is a semilocal ring iff <i>R</i> ≅ M<sub>n</sub>(<i>K</i>) and <i>K</i> is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if <i>φ</i> is a projection of a ring <i>R</i> = M<sub>n</sub>(<i>K</i>), where <i>K</i> is an arbitrary finite local ring, onto a ring <i>R</i><sup><i>φ</i></sup>, then <i>R</i><sup><i>φ</i></sup> = Mn(<i>K</i>′), in which case <i>K</i>′ is a local ring lattice-isomorphic to the ring <i>K</i>. We thus prove that the class of semilocal rings is lattice definable.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"61 2","pages":"125 - 138"},"PeriodicalIF":0.4000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projections of Semilocal Rings\",\"authors\":\"S. S. Korobkov\",\"doi\":\"10.1007/s10469-022-09681-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>Associative rings are considered. By a lattice isomorphism (or projection) of a ring <i>R</i> onto a ring <i>R</i><sup><i>φ</i></sup> we mean an isomorphism <i>φ</i> of the subring lattice L(<i>R</i>) of a ring <i>R</i> onto the subring lattice L(<i>R</i><sup><i>φ</i></sup>) of a ring <i>R</i><sup><i>φ</i></sup>. Let M<sub>n</sub>(GF(p<sup>k</sup>)) be the ring of all square matrices of order n over a finite field GF(<i>p</i><sup><i>k</i></sup>), where <i>n</i> and <i>k</i> are natural numbers, <i>p</i> is a prime. A finite ring R with identity is called a semilocal (primary) ring if R/RadR ≅ M<sub>n</sub>(GF(p<sup>k</sup>)). It is known that a finite ring R with identity is a semilocal ring iff <i>R</i> ≅ M<sub>n</sub>(<i>K</i>) and <i>K</i> is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if <i>φ</i> is a projection of a ring <i>R</i> = M<sub>n</sub>(<i>K</i>), where <i>K</i> is an arbitrary finite local ring, onto a ring <i>R</i><sup><i>φ</i></sup>, then <i>R</i><sup><i>φ</i></sup> = Mn(<i>K</i>′), in which case <i>K</i>′ is a local ring lattice-isomorphic to the ring <i>K</i>. We thus prove that the class of semilocal rings is lattice definable.</p></div></div>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"61 2\",\"pages\":\"125 - 138\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-022-09681-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09681-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

考虑了关联环。关于环R在环Rφ上的格同构(或投影),我们指的是环R的子环格L(R)在环RΦ的子环格子L(Rφ)上的同构φ。设Mn(GF(pk))是有限域GF(pk)上所有n阶方阵的环,其中n和k是自然数,p是素数。具有恒等式的有限环R称为半局部(主)环,如果R/RadRŞMn(GF(pk))。已知具有恒等式的有限环R是半局部环,当RΓMn(K)和K是有限局部环时。本文研究了有限半局部环的格同构。证明了如果φ是环R=Mn(K)的投影,其中K是任意有限局部环,到环Rφ上,则Rφ=Mn(K′),其中K′是同构于环K的局部环格。从而证明了半局部环类是可格定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projections of Semilocal Rings

Associative rings are considered. By a lattice isomorphism (or projection) of a ring R onto a ring Rφ we mean an isomorphism φ of the subring lattice L(R) of a ring R onto the subring lattice L(Rφ) of a ring Rφ. Let Mn(GF(pk)) be the ring of all square matrices of order n over a finite field GF(pk), where n and k are natural numbers, p is a prime. A finite ring R with identity is called a semilocal (primary) ring if R/RadR ≅ Mn(GF(pk)). It is known that a finite ring R with identity is a semilocal ring iff R ≅ Mn(K) and K is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if φ is a projection of a ring R = Mn(K), where K is an arbitrary finite local ring, onto a ring Rφ, then Rφ = Mn(K′), in which case K′ is a local ring lattice-isomorphic to the ring K. We thus prove that the class of semilocal rings is lattice definable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信