{"title":"半局部环的投影","authors":"S. S. Korobkov","doi":"10.1007/s10469-022-09681-z","DOIUrl":null,"url":null,"abstract":"<div><div><p>Associative rings are considered. By a lattice isomorphism (or projection) of a ring <i>R</i> onto a ring <i>R</i><sup><i>φ</i></sup> we mean an isomorphism <i>φ</i> of the subring lattice L(<i>R</i>) of a ring <i>R</i> onto the subring lattice L(<i>R</i><sup><i>φ</i></sup>) of a ring <i>R</i><sup><i>φ</i></sup>. Let M<sub>n</sub>(GF(p<sup>k</sup>)) be the ring of all square matrices of order n over a finite field GF(<i>p</i><sup><i>k</i></sup>), where <i>n</i> and <i>k</i> are natural numbers, <i>p</i> is a prime. A finite ring R with identity is called a semilocal (primary) ring if R/RadR ≅ M<sub>n</sub>(GF(p<sup>k</sup>)). It is known that a finite ring R with identity is a semilocal ring iff <i>R</i> ≅ M<sub>n</sub>(<i>K</i>) and <i>K</i> is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if <i>φ</i> is a projection of a ring <i>R</i> = M<sub>n</sub>(<i>K</i>), where <i>K</i> is an arbitrary finite local ring, onto a ring <i>R</i><sup><i>φ</i></sup>, then <i>R</i><sup><i>φ</i></sup> = Mn(<i>K</i>′), in which case <i>K</i>′ is a local ring lattice-isomorphic to the ring <i>K</i>. We thus prove that the class of semilocal rings is lattice definable.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"61 2","pages":"125 - 138"},"PeriodicalIF":0.4000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projections of Semilocal Rings\",\"authors\":\"S. S. Korobkov\",\"doi\":\"10.1007/s10469-022-09681-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>Associative rings are considered. By a lattice isomorphism (or projection) of a ring <i>R</i> onto a ring <i>R</i><sup><i>φ</i></sup> we mean an isomorphism <i>φ</i> of the subring lattice L(<i>R</i>) of a ring <i>R</i> onto the subring lattice L(<i>R</i><sup><i>φ</i></sup>) of a ring <i>R</i><sup><i>φ</i></sup>. Let M<sub>n</sub>(GF(p<sup>k</sup>)) be the ring of all square matrices of order n over a finite field GF(<i>p</i><sup><i>k</i></sup>), where <i>n</i> and <i>k</i> are natural numbers, <i>p</i> is a prime. A finite ring R with identity is called a semilocal (primary) ring if R/RadR ≅ M<sub>n</sub>(GF(p<sup>k</sup>)). It is known that a finite ring R with identity is a semilocal ring iff <i>R</i> ≅ M<sub>n</sub>(<i>K</i>) and <i>K</i> is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if <i>φ</i> is a projection of a ring <i>R</i> = M<sub>n</sub>(<i>K</i>), where <i>K</i> is an arbitrary finite local ring, onto a ring <i>R</i><sup><i>φ</i></sup>, then <i>R</i><sup><i>φ</i></sup> = Mn(<i>K</i>′), in which case <i>K</i>′ is a local ring lattice-isomorphic to the ring <i>K</i>. We thus prove that the class of semilocal rings is lattice definable.</p></div></div>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"61 2\",\"pages\":\"125 - 138\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-022-09681-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09681-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
Associative rings are considered. By a lattice isomorphism (or projection) of a ring R onto a ring Rφ we mean an isomorphism φ of the subring lattice L(R) of a ring R onto the subring lattice L(Rφ) of a ring Rφ. Let Mn(GF(pk)) be the ring of all square matrices of order n over a finite field GF(pk), where n and k are natural numbers, p is a prime. A finite ring R with identity is called a semilocal (primary) ring if R/RadR ≅ Mn(GF(pk)). It is known that a finite ring R with identity is a semilocal ring iff R ≅ Mn(K) and K is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if φ is a projection of a ring R = Mn(K), where K is an arbitrary finite local ring, onto a ring Rφ, then Rφ = Mn(K′), in which case K′ is a local ring lattice-isomorphic to the ring K. We thus prove that the class of semilocal rings is lattice definable.
期刊介绍:
This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions.
Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences.
All articles are peer-reviewed.