{"title":"格路径与负索引权相关二项式系数","authors":"Josef Küstner, Michael J. Schlosser, Meesue Yoo","doi":"10.1007/s00026-023-00639-1","DOIUrl":null,"url":null,"abstract":"<div><p>In 1992, Loeb (Adv Math, 91:64–74, 1992) considered a natural extension of the binomial coefficients to negative entries and gave a combinatorial interpretation in terms of hybrid sets. He showed that many of the fundamental properties of binomial coefficients continue to hold in this extended setting. Recently, Formichella and Straub (Ann Comb, 23:725–748, 2019) showed that these results can be extended to the <i>q</i>-binomial coefficients with arbitrary integer values and extended the work of Loeb further by examining the arithmetic properties of the <i>q</i>-binomial coefficients. In this paper, we give an alternative combinatorial interpretation in terms of lattice paths and consider an extension of the more general weight-dependent binomial coefficients, first defined by Schlosser (Sém Lothar Combin, 81:24, 2020), to arbitrary integer values. Remarkably, many of the results of Loeb, Formichella and Straub continue to hold in the general weighted setting. We also examine important special cases of the weight-dependent binomial coefficients, including ordinary, <i>q</i>- and elliptic binomial coefficients as well as elementary and complete homogeneous symmetric functions.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 4","pages":"917 - 955"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00639-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Lattice Paths and Negatively Indexed Weight-Dependent Binomial Coefficients\",\"authors\":\"Josef Küstner, Michael J. Schlosser, Meesue Yoo\",\"doi\":\"10.1007/s00026-023-00639-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1992, Loeb (Adv Math, 91:64–74, 1992) considered a natural extension of the binomial coefficients to negative entries and gave a combinatorial interpretation in terms of hybrid sets. He showed that many of the fundamental properties of binomial coefficients continue to hold in this extended setting. Recently, Formichella and Straub (Ann Comb, 23:725–748, 2019) showed that these results can be extended to the <i>q</i>-binomial coefficients with arbitrary integer values and extended the work of Loeb further by examining the arithmetic properties of the <i>q</i>-binomial coefficients. In this paper, we give an alternative combinatorial interpretation in terms of lattice paths and consider an extension of the more general weight-dependent binomial coefficients, first defined by Schlosser (Sém Lothar Combin, 81:24, 2020), to arbitrary integer values. Remarkably, many of the results of Loeb, Formichella and Straub continue to hold in the general weighted setting. We also examine important special cases of the weight-dependent binomial coefficients, including ordinary, <i>q</i>- and elliptic binomial coefficients as well as elementary and complete homogeneous symmetric functions.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"27 4\",\"pages\":\"917 - 955\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-023-00639-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00639-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00639-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Lattice Paths and Negatively Indexed Weight-Dependent Binomial Coefficients
In 1992, Loeb (Adv Math, 91:64–74, 1992) considered a natural extension of the binomial coefficients to negative entries and gave a combinatorial interpretation in terms of hybrid sets. He showed that many of the fundamental properties of binomial coefficients continue to hold in this extended setting. Recently, Formichella and Straub (Ann Comb, 23:725–748, 2019) showed that these results can be extended to the q-binomial coefficients with arbitrary integer values and extended the work of Loeb further by examining the arithmetic properties of the q-binomial coefficients. In this paper, we give an alternative combinatorial interpretation in terms of lattice paths and consider an extension of the more general weight-dependent binomial coefficients, first defined by Schlosser (Sém Lothar Combin, 81:24, 2020), to arbitrary integer values. Remarkably, many of the results of Loeb, Formichella and Straub continue to hold in the general weighted setting. We also examine important special cases of the weight-dependent binomial coefficients, including ordinary, q- and elliptic binomial coefficients as well as elementary and complete homogeneous symmetric functions.
期刊介绍:
Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board.
The scope of Annals of Combinatorics is covered by the following three tracks:
Algebraic Combinatorics:
Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices
Analytic and Algorithmic Combinatorics:
Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms
Graphs and Matroids:
Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches