格路径与负索引权相关二项式系数

Pub Date : 2023-02-21 DOI:10.1007/s00026-023-00639-1
Josef Küstner, Michael J. Schlosser, Meesue Yoo
{"title":"格路径与负索引权相关二项式系数","authors":"Josef Küstner,&nbsp;Michael J. Schlosser,&nbsp;Meesue Yoo","doi":"10.1007/s00026-023-00639-1","DOIUrl":null,"url":null,"abstract":"<div><p>In 1992, Loeb (Adv Math, 91:64–74, 1992) considered a natural extension of the binomial coefficients to negative entries and gave a combinatorial interpretation in terms of hybrid sets. He showed that many of the fundamental properties of binomial coefficients continue to hold in this extended setting. Recently, Formichella and Straub (Ann Comb, 23:725–748, 2019) showed that these results can be extended to the <i>q</i>-binomial coefficients with arbitrary integer values and extended the work of Loeb further by examining the arithmetic properties of the <i>q</i>-binomial coefficients. In this paper, we give an alternative combinatorial interpretation in terms of lattice paths and consider an extension of the more general weight-dependent binomial coefficients, first defined by Schlosser (Sém Lothar Combin, 81:24, 2020), to arbitrary integer values. Remarkably, many of the results of Loeb, Formichella and Straub continue to hold in the general weighted setting. We also examine important special cases of the weight-dependent binomial coefficients, including ordinary, <i>q</i>- and elliptic binomial coefficients as well as elementary and complete homogeneous symmetric functions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00639-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Lattice Paths and Negatively Indexed Weight-Dependent Binomial Coefficients\",\"authors\":\"Josef Küstner,&nbsp;Michael J. Schlosser,&nbsp;Meesue Yoo\",\"doi\":\"10.1007/s00026-023-00639-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1992, Loeb (Adv Math, 91:64–74, 1992) considered a natural extension of the binomial coefficients to negative entries and gave a combinatorial interpretation in terms of hybrid sets. He showed that many of the fundamental properties of binomial coefficients continue to hold in this extended setting. Recently, Formichella and Straub (Ann Comb, 23:725–748, 2019) showed that these results can be extended to the <i>q</i>-binomial coefficients with arbitrary integer values and extended the work of Loeb further by examining the arithmetic properties of the <i>q</i>-binomial coefficients. In this paper, we give an alternative combinatorial interpretation in terms of lattice paths and consider an extension of the more general weight-dependent binomial coefficients, first defined by Schlosser (Sém Lothar Combin, 81:24, 2020), to arbitrary integer values. Remarkably, many of the results of Loeb, Formichella and Straub continue to hold in the general weighted setting. We also examine important special cases of the weight-dependent binomial coefficients, including ordinary, <i>q</i>- and elliptic binomial coefficients as well as elementary and complete homogeneous symmetric functions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-023-00639-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00639-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00639-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1992年,Loeb(Adv Math,91:64–741992)考虑了二项式系数对负项的自然扩展,并根据混合集给出了组合解释。他证明了二项式系数的许多基本性质在这种扩展设置中仍然成立。最近,Formichella和Straub(Ann Comb,23:725–7482019)表明,这些结果可以推广到具有任意整数值的q-二项式系数,并通过检验q-二项系数的算术性质进一步扩展了Loeb的工作。在本文中,我们根据格路径给出了另一种组合解释,并考虑了Schlosser(Sém-Lothar Combin,81:242020)首次定义的更一般的权重相关二项式系数到任意整数值的扩展。值得注意的是,勒布、福米切拉和斯特劳布的许多结果仍然保持在一般加权环境中。我们还研究了权重相关二项式系数的重要特例,包括常、q和椭圆二项式,以及初等和完全齐次对称函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lattice Paths and Negatively Indexed Weight-Dependent Binomial Coefficients

分享
查看原文
Lattice Paths and Negatively Indexed Weight-Dependent Binomial Coefficients

In 1992, Loeb (Adv Math, 91:64–74, 1992) considered a natural extension of the binomial coefficients to negative entries and gave a combinatorial interpretation in terms of hybrid sets. He showed that many of the fundamental properties of binomial coefficients continue to hold in this extended setting. Recently, Formichella and Straub (Ann Comb, 23:725–748, 2019) showed that these results can be extended to the q-binomial coefficients with arbitrary integer values and extended the work of Loeb further by examining the arithmetic properties of the q-binomial coefficients. In this paper, we give an alternative combinatorial interpretation in terms of lattice paths and consider an extension of the more general weight-dependent binomial coefficients, first defined by Schlosser (Sém Lothar Combin, 81:24, 2020), to arbitrary integer values. Remarkably, many of the results of Loeb, Formichella and Straub continue to hold in the general weighted setting. We also examine important special cases of the weight-dependent binomial coefficients, including ordinary, q- and elliptic binomial coefficients as well as elementary and complete homogeneous symmetric functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信