Klaus Steinbauer, Andrea Lamprecht, Philipp Semenchuk, Manuela Winkler, Harald Pauli
{"title":"衰退和扩张:高阿尔卑斯山脉20年升温加剧期间的物种特异性反应","authors":"Klaus Steinbauer, Andrea Lamprecht, Philipp Semenchuk, Manuela Winkler, Harald Pauli","doi":"10.1007/s00035-019-00230-6","DOIUrl":null,"url":null,"abstract":"<div><p>The largest alpine–nival vegetation permanent plot site in the Alps, the GLORIA mastersite Schrankogel (Tirol, Austria), provided evidence of warming-driven vegetation changes already 10 years after its establishment in 1994. Another decade later, in 2014, substantial compositional changes with increasing ratios of warmth-demanding to cold-adapted species have been found. The current study deals with species-specific responses involved in an ongoing vegetation transformation across the alpine–nival ecotone on Schrankogel by using presence/absence as well as cover data from permanent plots, situated between 2900 and 3400 masl. The number of occupied plots per species remained constant or even increased during the first decade, whereas disappearance events became more frequent during the second one, especially for cold-adapted specialists (subnival–nival species). Remarkably, the latter was accompanied by continued strong losses in cover of all subnival–nival species. These losses were more frequent in plots with a more thermophilous species composition, suggesting an increasing maladaptation of subnival–nival species to warmer habitat conditions and a successive trailing-edge decline. Several species with a distribution centre at lower elevations (alpine–subnival) markedly increased in cover, comparatively more so in colder plots, indicating a leading-edge expansion. Moreover, our findings show an increase in occupied plots and cover of almost all snowbed species, suggesting that areas previously with a too long snowpack period are now becoming suitable snowbed habitats. Vegetation gaps arising from population dieback of cold-adapted species, however, could only be partly filled by advancing species, indicating that species declines have occurred already before the onset of strong competition pressure.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-019-00230-6","citationCount":"20","resultStr":"{\"title\":\"Dieback and expansions: species-specific responses during 20 years of amplified warming in the high Alps\",\"authors\":\"Klaus Steinbauer, Andrea Lamprecht, Philipp Semenchuk, Manuela Winkler, Harald Pauli\",\"doi\":\"10.1007/s00035-019-00230-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The largest alpine–nival vegetation permanent plot site in the Alps, the GLORIA mastersite Schrankogel (Tirol, Austria), provided evidence of warming-driven vegetation changes already 10 years after its establishment in 1994. Another decade later, in 2014, substantial compositional changes with increasing ratios of warmth-demanding to cold-adapted species have been found. The current study deals with species-specific responses involved in an ongoing vegetation transformation across the alpine–nival ecotone on Schrankogel by using presence/absence as well as cover data from permanent plots, situated between 2900 and 3400 masl. The number of occupied plots per species remained constant or even increased during the first decade, whereas disappearance events became more frequent during the second one, especially for cold-adapted specialists (subnival–nival species). Remarkably, the latter was accompanied by continued strong losses in cover of all subnival–nival species. These losses were more frequent in plots with a more thermophilous species composition, suggesting an increasing maladaptation of subnival–nival species to warmer habitat conditions and a successive trailing-edge decline. Several species with a distribution centre at lower elevations (alpine–subnival) markedly increased in cover, comparatively more so in colder plots, indicating a leading-edge expansion. Moreover, our findings show an increase in occupied plots and cover of almost all snowbed species, suggesting that areas previously with a too long snowpack period are now becoming suitable snowbed habitats. Vegetation gaps arising from population dieback of cold-adapted species, however, could only be partly filled by advancing species, indicating that species declines have occurred already before the onset of strong competition pressure.</p></div>\",\"PeriodicalId\":51238,\"journal\":{\"name\":\"Alpine Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00035-019-00230-6\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alpine Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00035-019-00230-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alpine Botany","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00035-019-00230-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Dieback and expansions: species-specific responses during 20 years of amplified warming in the high Alps
The largest alpine–nival vegetation permanent plot site in the Alps, the GLORIA mastersite Schrankogel (Tirol, Austria), provided evidence of warming-driven vegetation changes already 10 years after its establishment in 1994. Another decade later, in 2014, substantial compositional changes with increasing ratios of warmth-demanding to cold-adapted species have been found. The current study deals with species-specific responses involved in an ongoing vegetation transformation across the alpine–nival ecotone on Schrankogel by using presence/absence as well as cover data from permanent plots, situated between 2900 and 3400 masl. The number of occupied plots per species remained constant or even increased during the first decade, whereas disappearance events became more frequent during the second one, especially for cold-adapted specialists (subnival–nival species). Remarkably, the latter was accompanied by continued strong losses in cover of all subnival–nival species. These losses were more frequent in plots with a more thermophilous species composition, suggesting an increasing maladaptation of subnival–nival species to warmer habitat conditions and a successive trailing-edge decline. Several species with a distribution centre at lower elevations (alpine–subnival) markedly increased in cover, comparatively more so in colder plots, indicating a leading-edge expansion. Moreover, our findings show an increase in occupied plots and cover of almost all snowbed species, suggesting that areas previously with a too long snowpack period are now becoming suitable snowbed habitats. Vegetation gaps arising from population dieback of cold-adapted species, however, could only be partly filled by advancing species, indicating that species declines have occurred already before the onset of strong competition pressure.
期刊介绍:
Alpine Botany is an international journal providing a forum for plant science studies at high elevation with links to fungal and microbial ecology, including vegetation and flora of mountain regions worldwide.