能源智能建筑的人工智能时间规划

Q2 Energy
Ilche Georgievski, Muhammad Zamik Shahid, Marco Aiello
{"title":"能源智能建筑的人工智能时间规划","authors":"Ilche Georgievski,&nbsp;Muhammad Zamik Shahid,&nbsp;Marco Aiello","doi":"10.1186/s42162-023-00289-w","DOIUrl":null,"url":null,"abstract":"<div><p>Buildings are responsible for about one-third of industrialised countries’ overall energy consumption and greenhouse gas emissions. As if this was not enough, recently, energy prices significantly increased and affected all economic areas. Making buildings more efficient and effective is the step needed toward cost reductions. Key enablers of cost-effectiveness are leveraging batteries, awareness of and adaptability to energy prices, and integrating powerful reasoning techniques to optimally and flexibly operate buildings. Researchers have tackled many of these aspects using a variety of approaches. Whereas a less investigated one is that of AI planning to coordinate actions and save energy in buildings. However, generating plans based on signals of energy prices and leveraging batteries is still an open research problem. To address this high-potential aspect, we engineer an AI planning system for improving the energy-cost effectiveness in buildings by coordinating the building’s operation based on day-ahead prices and the use of a battery, all without sacrificing the comfort of building occupants. We propose to exploit temporal planning due to its powerful modelling and reasoning features, especially in explicitly addressing time. We evaluate the effectiveness of the system in several scenarios with varying building environmental conditions. We compare the energy cost from using our planning system to a baseline cost, where we record a reduction of 43rage in favour of our system.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-023-00289-w","citationCount":"0","resultStr":"{\"title\":\"AI temporal planning for energy smart buildings\",\"authors\":\"Ilche Georgievski,&nbsp;Muhammad Zamik Shahid,&nbsp;Marco Aiello\",\"doi\":\"10.1186/s42162-023-00289-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Buildings are responsible for about one-third of industrialised countries’ overall energy consumption and greenhouse gas emissions. As if this was not enough, recently, energy prices significantly increased and affected all economic areas. Making buildings more efficient and effective is the step needed toward cost reductions. Key enablers of cost-effectiveness are leveraging batteries, awareness of and adaptability to energy prices, and integrating powerful reasoning techniques to optimally and flexibly operate buildings. Researchers have tackled many of these aspects using a variety of approaches. Whereas a less investigated one is that of AI planning to coordinate actions and save energy in buildings. However, generating plans based on signals of energy prices and leveraging batteries is still an open research problem. To address this high-potential aspect, we engineer an AI planning system for improving the energy-cost effectiveness in buildings by coordinating the building’s operation based on day-ahead prices and the use of a battery, all without sacrificing the comfort of building occupants. We propose to exploit temporal planning due to its powerful modelling and reasoning features, especially in explicitly addressing time. We evaluate the effectiveness of the system in several scenarios with varying building environmental conditions. We compare the energy cost from using our planning system to a baseline cost, where we record a reduction of 43rage in favour of our system.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-023-00289-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-023-00289-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-023-00289-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

建筑约占工业化国家总能源消耗和温室气体排放量的三分之一。似乎这还不够,最近,能源价格大幅上涨,影响了所有经济领域。使建筑更加高效和有效是降低成本所需的步骤。成本效益的关键因素是利用电池、对能源价格的认识和适应性,以及集成强大的推理技术以优化和灵活地操作建筑。研究人员已经使用各种方法解决了其中的许多方面。而研究较少的是人工智能规划,以协调行动并节省建筑能源。然而,根据能源价格信号制定计划和利用电池仍然是一个悬而未决的研究问题。为了解决这一高潜力方面,我们设计了一个人工智能规划系统,通过根据未来价格和电池的使用协调建筑的运营,在不牺牲建筑居住者舒适度的情况下,提高建筑的能源成本效益。我们建议利用时间规划,因为它具有强大的建模和推理功能,特别是在明确寻址时间方面。我们评估了该系统在不同建筑环境条件下的几种情况下的有效性。我们将使用我们的规划系统产生的能源成本与基线成本进行了比较,在基线成本中,我们记录到有利于我们的系统的能源成本减少了43。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI temporal planning for energy smart buildings

Buildings are responsible for about one-third of industrialised countries’ overall energy consumption and greenhouse gas emissions. As if this was not enough, recently, energy prices significantly increased and affected all economic areas. Making buildings more efficient and effective is the step needed toward cost reductions. Key enablers of cost-effectiveness are leveraging batteries, awareness of and adaptability to energy prices, and integrating powerful reasoning techniques to optimally and flexibly operate buildings. Researchers have tackled many of these aspects using a variety of approaches. Whereas a less investigated one is that of AI planning to coordinate actions and save energy in buildings. However, generating plans based on signals of energy prices and leveraging batteries is still an open research problem. To address this high-potential aspect, we engineer an AI planning system for improving the energy-cost effectiveness in buildings by coordinating the building’s operation based on day-ahead prices and the use of a battery, all without sacrificing the comfort of building occupants. We propose to exploit temporal planning due to its powerful modelling and reasoning features, especially in explicitly addressing time. We evaluate the effectiveness of the system in several scenarios with varying building environmental conditions. We compare the energy cost from using our planning system to a baseline cost, where we record a reduction of 43rage in favour of our system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信