RD空间上广义Morrey空间上双线性广义分数积分算子及其交换算子的估计

IF 1.2 3区 数学 Q1 MATHEMATICS
Guanghui Lu, Shuangping Tao, Miaomiao Wang
{"title":"RD空间上广义Morrey空间上双线性广义分数积分算子及其交换算子的估计","authors":"Guanghui Lu,&nbsp;Shuangping Tao,&nbsp;Miaomiao Wang","doi":"10.1007/s43034-023-00302-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((X,d,\\mu )\\)</span> be an RD-space. In this paper, we prove that a bilinear generalized fractional integral <span>\\(\\widetilde{T}_{\\alpha }\\)</span> is bounded from the product of generalized Morrey spaces <span>\\(\\mathcal {L}^{\\varphi _{1},p_{1}}(X)\\times \\mathcal {L}^{\\varphi _{2},p_{2}}(X)\\)</span> into spaces <span>\\(\\mathcal {L}^{\\varphi ,q}(X)\\)</span>, and it is also bounded from the product of spaces <span>\\(\\mathcal {L}^{\\varphi _{1},p_{1}}(X)\\times \\mathcal {L}^{\\varphi _{2},p_{2}}(X)\\)</span> into generalized weak Morrey spaces <span>\\(W\\mathcal {L}^{\\varphi ,q}(X)\\)</span>, where the Lebesgue measurable functions <span>\\(\\varphi _{1}, \\varphi _{2}\\)</span> and <span>\\(\\varphi \\)</span> satisfy certain conditions and <span>\\(\\varphi _{1}\\varphi _{2}=\\varphi \\)</span>, <span>\\(\\alpha \\in (0,1)\\)</span> and <span>\\(\\frac{1}{q}=\\frac{1}{p_{1}}+\\frac{1}{p_{2}}-2\\alpha \\)</span> for <span>\\(1&lt;p_{1}, p_{2}&lt;\\frac{1}{\\alpha }\\)</span>. Furthermore, we establish the boundedness of the commutator <span>\\(\\widetilde{T}_{\\alpha ,b_{1},b_{2}}\\)</span> formed by <span>\\(b_{1},b_{2}\\in \\)</span> <span>\\(\\textrm{BMO}(X)(\\hbox {or }\\textrm{Lip}_{\\beta }(X))\\)</span> and <span>\\(\\widetilde{T}_{\\alpha }\\)</span> on spaces <span>\\(\\mathcal {L}^{\\varphi ,q}(X)\\)</span> and on spaces <span>\\(W\\mathcal {L}^{\\varphi ,q}(X)\\)</span>. As applications, we show that the <span>\\(\\widetilde{T}_{\\alpha }\\)</span> and its commutator <span>\\(\\widetilde{T}_{\\alpha ,b_{1},b_{2}}\\)</span> are bounded on grand generalized Morrey spaces <span>\\(\\mathcal {L}^{\\theta ,\\varphi ,p)}(X)\\)</span> over <span>\\((X,d,\\mu )\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates for bilinear generalized fractional integral operator and its commutator on generalized Morrey spaces over RD-spaces\",\"authors\":\"Guanghui Lu,&nbsp;Shuangping Tao,&nbsp;Miaomiao Wang\",\"doi\":\"10.1007/s43034-023-00302-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((X,d,\\\\mu )\\\\)</span> be an RD-space. In this paper, we prove that a bilinear generalized fractional integral <span>\\\\(\\\\widetilde{T}_{\\\\alpha }\\\\)</span> is bounded from the product of generalized Morrey spaces <span>\\\\(\\\\mathcal {L}^{\\\\varphi _{1},p_{1}}(X)\\\\times \\\\mathcal {L}^{\\\\varphi _{2},p_{2}}(X)\\\\)</span> into spaces <span>\\\\(\\\\mathcal {L}^{\\\\varphi ,q}(X)\\\\)</span>, and it is also bounded from the product of spaces <span>\\\\(\\\\mathcal {L}^{\\\\varphi _{1},p_{1}}(X)\\\\times \\\\mathcal {L}^{\\\\varphi _{2},p_{2}}(X)\\\\)</span> into generalized weak Morrey spaces <span>\\\\(W\\\\mathcal {L}^{\\\\varphi ,q}(X)\\\\)</span>, where the Lebesgue measurable functions <span>\\\\(\\\\varphi _{1}, \\\\varphi _{2}\\\\)</span> and <span>\\\\(\\\\varphi \\\\)</span> satisfy certain conditions and <span>\\\\(\\\\varphi _{1}\\\\varphi _{2}=\\\\varphi \\\\)</span>, <span>\\\\(\\\\alpha \\\\in (0,1)\\\\)</span> and <span>\\\\(\\\\frac{1}{q}=\\\\frac{1}{p_{1}}+\\\\frac{1}{p_{2}}-2\\\\alpha \\\\)</span> for <span>\\\\(1&lt;p_{1}, p_{2}&lt;\\\\frac{1}{\\\\alpha }\\\\)</span>. Furthermore, we establish the boundedness of the commutator <span>\\\\(\\\\widetilde{T}_{\\\\alpha ,b_{1},b_{2}}\\\\)</span> formed by <span>\\\\(b_{1},b_{2}\\\\in \\\\)</span> <span>\\\\(\\\\textrm{BMO}(X)(\\\\hbox {or }\\\\textrm{Lip}_{\\\\beta }(X))\\\\)</span> and <span>\\\\(\\\\widetilde{T}_{\\\\alpha }\\\\)</span> on spaces <span>\\\\(\\\\mathcal {L}^{\\\\varphi ,q}(X)\\\\)</span> and on spaces <span>\\\\(W\\\\mathcal {L}^{\\\\varphi ,q}(X)\\\\)</span>. As applications, we show that the <span>\\\\(\\\\widetilde{T}_{\\\\alpha }\\\\)</span> and its commutator <span>\\\\(\\\\widetilde{T}_{\\\\alpha ,b_{1},b_{2}}\\\\)</span> are bounded on grand generalized Morrey spaces <span>\\\\(\\\\mathcal {L}^{\\\\theta ,\\\\varphi ,p)}(X)\\\\)</span> over <span>\\\\((X,d,\\\\mu )\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00302-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00302-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\((X,d,\mu)\)是一个RD空间。本文证明了双线性广义分数积分{T}_{\alpha})从广义Morrey空间的乘积(\mathcal{L}^{\varphi _{1},p_{1}}(X)\times\mathcal{L}^{\ varphi_{2},p_{2}}}(X)\)到空间(\mathcal{L}^{\varphi,q}φ{2},p_{2}}(X)\)转化为广义弱Morrey空间\(W\mathcal{L}^{\varphi,q}{1}{p_{2}}-2\alpha\),用于\(1<;p_{1},p_{2}<;\frac{1}{\alpha}\)。此外,我们还建立了交换子\(\ widetilde)的有界性{T}_{\alpha,b_{1},b_{2}}\),由\(b_{{Lip}_{\beta}(X))\)和\(\宽波浪号{T}_{\alpha}\)和空间\(W\mathcal{L}^{\varphi,q}。作为应用程序,我们展示了\(\宽波浪号{T}_{\alpha}\)及其换向器\(\宽颚化符{T}_{\alpha,b_{1},b_{2}})在大广义Morrey空间\(\mathcal{L}^{\theta,\varphi,p)}(X)\)上有界于\((X,d,\mu)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates for bilinear generalized fractional integral operator and its commutator on generalized Morrey spaces over RD-spaces

Let \((X,d,\mu )\) be an RD-space. In this paper, we prove that a bilinear generalized fractional integral \(\widetilde{T}_{\alpha }\) is bounded from the product of generalized Morrey spaces \(\mathcal {L}^{\varphi _{1},p_{1}}(X)\times \mathcal {L}^{\varphi _{2},p_{2}}(X)\) into spaces \(\mathcal {L}^{\varphi ,q}(X)\), and it is also bounded from the product of spaces \(\mathcal {L}^{\varphi _{1},p_{1}}(X)\times \mathcal {L}^{\varphi _{2},p_{2}}(X)\) into generalized weak Morrey spaces \(W\mathcal {L}^{\varphi ,q}(X)\), where the Lebesgue measurable functions \(\varphi _{1}, \varphi _{2}\) and \(\varphi \) satisfy certain conditions and \(\varphi _{1}\varphi _{2}=\varphi \), \(\alpha \in (0,1)\) and \(\frac{1}{q}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-2\alpha \) for \(1<p_{1}, p_{2}<\frac{1}{\alpha }\). Furthermore, we establish the boundedness of the commutator \(\widetilde{T}_{\alpha ,b_{1},b_{2}}\) formed by \(b_{1},b_{2}\in \) \(\textrm{BMO}(X)(\hbox {or }\textrm{Lip}_{\beta }(X))\) and \(\widetilde{T}_{\alpha }\) on spaces \(\mathcal {L}^{\varphi ,q}(X)\) and on spaces \(W\mathcal {L}^{\varphi ,q}(X)\). As applications, we show that the \(\widetilde{T}_{\alpha }\) and its commutator \(\widetilde{T}_{\alpha ,b_{1},b_{2}}\) are bounded on grand generalized Morrey spaces \(\mathcal {L}^{\theta ,\varphi ,p)}(X)\) over \((X,d,\mu )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信