几何结构的谐波流动

Pub Date : 2023-10-17 DOI:10.1007/s10455-023-09928-7
Eric Loubeau, Henrique N. Sá Earp
{"title":"几何结构的谐波流动","authors":"Eric Loubeau,&nbsp;Henrique N. Sá Earp","doi":"10.1007/s10455-023-09928-7","DOIUrl":null,"url":null,"abstract":"<div><p>We give a twistorial interpretation of geometric structures on a Riemannian manifold, as sections of homogeneous fibre bundles, following an original insight by Wood (Differ Geom Appl 19:193–210, 2003). The natural Dirichlet energy induces an abstract harmonicity condition, which gives rise to a geometric gradient flow. We establish a number of analytic properties for this flow, such as uniqueness, smoothness, short-time existence, and some sufficient conditions for long-time existence. This description potentially subsumes a large class of geometric PDE problems from different contexts. As applications, we recover and unify a number of results in the literature: for the isometric flow of <span>\\(\\text {G}_2\\)</span>-structures, by Grigorian (Adv Math 308:142–207, 2017; Calculas Variat Partial Differ Equ 58:157, 2019), Bagaglini (J Geom Anal, 2009), and Dwivedi-Gianniotis-Karigiannis (J Geom Anal 31(2):1855-1933, 2021); and for harmonic almost complex structures, by He (Energy minimizing harmonic almost complex structures, 2019) and He-Li (Trans Am Math Soc 374(9):6179–6199, 2021). Our theory also establishes original properties regarding harmonic flows of parallelisms and almost contact structures.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09928-7.pdf","citationCount":"14","resultStr":"{\"title\":\"Harmonic flow of geometric structures\",\"authors\":\"Eric Loubeau,&nbsp;Henrique N. Sá Earp\",\"doi\":\"10.1007/s10455-023-09928-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a twistorial interpretation of geometric structures on a Riemannian manifold, as sections of homogeneous fibre bundles, following an original insight by Wood (Differ Geom Appl 19:193–210, 2003). The natural Dirichlet energy induces an abstract harmonicity condition, which gives rise to a geometric gradient flow. We establish a number of analytic properties for this flow, such as uniqueness, smoothness, short-time existence, and some sufficient conditions for long-time existence. This description potentially subsumes a large class of geometric PDE problems from different contexts. As applications, we recover and unify a number of results in the literature: for the isometric flow of <span>\\\\(\\\\text {G}_2\\\\)</span>-structures, by Grigorian (Adv Math 308:142–207, 2017; Calculas Variat Partial Differ Equ 58:157, 2019), Bagaglini (J Geom Anal, 2009), and Dwivedi-Gianniotis-Karigiannis (J Geom Anal 31(2):1855-1933, 2021); and for harmonic almost complex structures, by He (Energy minimizing harmonic almost complex structures, 2019) and He-Li (Trans Am Math Soc 374(9):6179–6199, 2021). Our theory also establishes original properties regarding harmonic flows of parallelisms and almost contact structures.\\n</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09928-7.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09928-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09928-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

根据Wood的原始见解(Differ Geom Appl 19:193–2102003),我们对黎曼流形上的几何结构(作为均匀纤维束的截面)进行了扭曲解释。自然狄利克雷能量诱导了一个抽象的调和条件,从而产生了几何梯度流。我们建立了该流的一些解析性质,如唯一性、光滑性、短时存在性和长期存在的一些充分条件。这一描述可能包含了来自不同背景的一大类几何PDE问题。作为应用,我们恢复并统一了文献中的许多结果:对于\(\text的等距流{G}_2\)-Grigorian的《结构》(Adv Math 308:142–2072017;微积分变分偏微分方程58:1572019)、Bagaglini(J Geom Anal,2009)和Dwivedi Giannotis Karigiannis(J Geom-Anal 31(2):1855-19332021);对于谐波几乎复杂的结构,何(能量最小化谐波几乎复杂结构,2019)和何力(Trans-Am Math Soc 374(9):6179–61992021)。我们的理论还建立了关于平行体和几乎接触结构的调和流的原始性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Harmonic flow of geometric structures

We give a twistorial interpretation of geometric structures on a Riemannian manifold, as sections of homogeneous fibre bundles, following an original insight by Wood (Differ Geom Appl 19:193–210, 2003). The natural Dirichlet energy induces an abstract harmonicity condition, which gives rise to a geometric gradient flow. We establish a number of analytic properties for this flow, such as uniqueness, smoothness, short-time existence, and some sufficient conditions for long-time existence. This description potentially subsumes a large class of geometric PDE problems from different contexts. As applications, we recover and unify a number of results in the literature: for the isometric flow of \(\text {G}_2\)-structures, by Grigorian (Adv Math 308:142–207, 2017; Calculas Variat Partial Differ Equ 58:157, 2019), Bagaglini (J Geom Anal, 2009), and Dwivedi-Gianniotis-Karigiannis (J Geom Anal 31(2):1855-1933, 2021); and for harmonic almost complex structures, by He (Energy minimizing harmonic almost complex structures, 2019) and He-Li (Trans Am Math Soc 374(9):6179–6199, 2021). Our theory also establishes original properties regarding harmonic flows of parallelisms and almost contact structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信