加权平移半群:多变量情形

IF 0.5 Q3 MATHEMATICS
Geetanjali M. Phatak, V. M. Sholapurkar
{"title":"加权平移半群:多变量情形","authors":"Geetanjali M. Phatak,&nbsp;V. M. Sholapurkar","doi":"10.1007/s44146-023-00085-8","DOIUrl":null,"url":null,"abstract":"<div><p>M. Embry and A. Lambert initiated the study of a weighted translation semigroup <span>\\(\\{S_t\\}\\)</span> in <span>\\({\\mathcal B}(L^2({{\\mathbb R}_+})),\\)</span> with a view to explore a continuous analogue of a weighted shift operator. We continued the work, characterized some special types of semigroups and developed an analytic model for the left invertible weighted translation semigroup. The present paper deals with the generalization of the weighted translation semigroup in multi-variable set up. We develop the toral analogue of the analytic model and also describe the spectral picture. We provide many examples of weighted translation semigroups in multi-variable case. Further, we replace the space <span>\\(L^2({{\\mathbb R}_+})\\)</span> by <span>\\(L^2({{\\mathbb R}_+^d})\\)</span> and explore the properties of weighted translation semigroup <span>\\(\\{S_{\\overline{t}}\\}\\)</span> in <span>\\({\\mathcal B}(L^2({{\\mathbb R}_+^d})),\\)</span> in both one and multi variable cases.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"35 - 52"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00085-8.pdf","citationCount":"1","resultStr":"{\"title\":\"Weighted translation semigroups: multivariable case\",\"authors\":\"Geetanjali M. Phatak,&nbsp;V. M. Sholapurkar\",\"doi\":\"10.1007/s44146-023-00085-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>M. Embry and A. Lambert initiated the study of a weighted translation semigroup <span>\\\\(\\\\{S_t\\\\}\\\\)</span> in <span>\\\\({\\\\mathcal B}(L^2({{\\\\mathbb R}_+})),\\\\)</span> with a view to explore a continuous analogue of a weighted shift operator. We continued the work, characterized some special types of semigroups and developed an analytic model for the left invertible weighted translation semigroup. The present paper deals with the generalization of the weighted translation semigroup in multi-variable set up. We develop the toral analogue of the analytic model and also describe the spectral picture. We provide many examples of weighted translation semigroups in multi-variable case. Further, we replace the space <span>\\\\(L^2({{\\\\mathbb R}_+})\\\\)</span> by <span>\\\\(L^2({{\\\\mathbb R}_+^d})\\\\)</span> and explore the properties of weighted translation semigroup <span>\\\\(\\\\{S_{\\\\overline{t}}\\\\}\\\\)</span> in <span>\\\\({\\\\mathcal B}(L^2({{\\\\mathbb R}_+^d})),\\\\)</span> in both one and multi variable cases.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 1-2\",\"pages\":\"35 - 52\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00085-8.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00085-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00085-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

M.Embry和A.Lambert在\({\mathcal B}(L^2({\ \mathbb R}_+})),\)中提出了一个加权平移半群({S_t})的研究,以期探索加权移位算子的连续相似性。我们继续这项工作,刻画了一些特殊类型的半群,并建立了左可逆加权平移半群的解析模型。本文讨论了加权平移半群在多变量集合中的推广问题。我们开发了分析模型的博士后模拟,并描述了光谱图。我们给出了多变量情况下加权平移半群的许多例子。此外,我们将空间\(L^2({{\mathbb R}_+^d})\)替换为\(L^ 2({\math bb R}_+^ d}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted translation semigroups: multivariable case

M. Embry and A. Lambert initiated the study of a weighted translation semigroup \(\{S_t\}\) in \({\mathcal B}(L^2({{\mathbb R}_+})),\) with a view to explore a continuous analogue of a weighted shift operator. We continued the work, characterized some special types of semigroups and developed an analytic model for the left invertible weighted translation semigroup. The present paper deals with the generalization of the weighted translation semigroup in multi-variable set up. We develop the toral analogue of the analytic model and also describe the spectral picture. We provide many examples of weighted translation semigroups in multi-variable case. Further, we replace the space \(L^2({{\mathbb R}_+})\) by \(L^2({{\mathbb R}_+^d})\) and explore the properties of weighted translation semigroup \(\{S_{\overline{t}}\}\) in \({\mathcal B}(L^2({{\mathbb R}_+^d})),\) in both one and multi variable cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信