{"title":"一种基于光子的超外差射频接收方法","authors":"Guangyu Gao, Qijun Liang, Ziyu Liu, Huanfa Peng, Qiang Zhao, Naijin Liu","doi":"10.1007/s42423-021-00089-y","DOIUrl":null,"url":null,"abstract":"<div><p>A novel photonics-based RF reception approach is proposed as a competitive solution to meet the current challenges of photonics-based approaches and to realize high performances at the same time. The proposed approach adopts the superheterodyne configuration by a combination manner of electronic techniques and photonic techniques, including the ultra-wideband generation of optical LO, the two-stage photonic superheterodyne frequency conversion and the real-time IF compensation. An engineering prototype has been developed and its performance has been evaluated in the laboratory environment. The experiment results preliminarily verify the feasibility of the proposed approach and its engineering potential. The typical performances are as follows: 0.1 GHz ~ 45 GHz operation spectrum range (> 40 GHz), 900 MHz instantaneous bandwidth, 101 dB·Hz<sup>2/3</sup> SFDR and 130 dB·Hz LDR, image rejections of ~ 80 dB for 1st frequency conversion and > 90 dB for 2nd frequency conversion.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"4 2","pages":"121 - 131"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42423-021-00089-y.pdf","citationCount":"1","resultStr":"{\"title\":\"A Photonics-Based Superheterodyne RF Reception Approach\",\"authors\":\"Guangyu Gao, Qijun Liang, Ziyu Liu, Huanfa Peng, Qiang Zhao, Naijin Liu\",\"doi\":\"10.1007/s42423-021-00089-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel photonics-based RF reception approach is proposed as a competitive solution to meet the current challenges of photonics-based approaches and to realize high performances at the same time. The proposed approach adopts the superheterodyne configuration by a combination manner of electronic techniques and photonic techniques, including the ultra-wideband generation of optical LO, the two-stage photonic superheterodyne frequency conversion and the real-time IF compensation. An engineering prototype has been developed and its performance has been evaluated in the laboratory environment. The experiment results preliminarily verify the feasibility of the proposed approach and its engineering potential. The typical performances are as follows: 0.1 GHz ~ 45 GHz operation spectrum range (> 40 GHz), 900 MHz instantaneous bandwidth, 101 dB·Hz<sup>2/3</sup> SFDR and 130 dB·Hz LDR, image rejections of ~ 80 dB for 1st frequency conversion and > 90 dB for 2nd frequency conversion.</p></div>\",\"PeriodicalId\":100039,\"journal\":{\"name\":\"Advances in Astronautics Science and Technology\",\"volume\":\"4 2\",\"pages\":\"121 - 131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42423-021-00089-y.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronautics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42423-021-00089-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-021-00089-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Photonics-Based Superheterodyne RF Reception Approach
A novel photonics-based RF reception approach is proposed as a competitive solution to meet the current challenges of photonics-based approaches and to realize high performances at the same time. The proposed approach adopts the superheterodyne configuration by a combination manner of electronic techniques and photonic techniques, including the ultra-wideband generation of optical LO, the two-stage photonic superheterodyne frequency conversion and the real-time IF compensation. An engineering prototype has been developed and its performance has been evaluated in the laboratory environment. The experiment results preliminarily verify the feasibility of the proposed approach and its engineering potential. The typical performances are as follows: 0.1 GHz ~ 45 GHz operation spectrum range (> 40 GHz), 900 MHz instantaneous bandwidth, 101 dB·Hz2/3 SFDR and 130 dB·Hz LDR, image rejections of ~ 80 dB for 1st frequency conversion and > 90 dB for 2nd frequency conversion.